Knowledge Distillation via Entropy Map for Scene Text Detection

计算机科学 熵(时间箭头) 蒸馏 人工智能 数据挖掘 模式识别(心理学)
作者
Jianwei Chen,Yongxuan Lai,Yifeng Zeng,Fan Yang
出处
期刊:International Conference on Computer Science and Education
标识
DOI:10.1109/iccse51940.2021.9569689
摘要

In recent years, state-of-the-art scene text detectors use cumbersome segmentation models as their detection frameworks, but this type of detection model is difficult to deploy to mobile devices with limited computing resources. An effective method to achieve a good compromise between detection accuracy and model complexity is knowledge distillation. The existing knowledge distillation methods cannot make full use of the output characteristics of the segmentation-based text detection, that is, each pixel on the segmentation map represents the probability that the pixel belongs to the text. The results of the entropy map corresponding to the visualized segmentation map show that the degree of confusion between the information entropy map of the student network and the teacher network reflects the gap in generalization ability. In this work, we propose a novel knowledge distillation via entropy map(KDEM). Specifically, the entropy map of the teacher network segmentation map is used as knowledge to guide student network learning. In order to eliminate the possible adverse effects of entropy in non-target regions, we multiply the information entropy map of the teacher network with the mask of the text region to extract the knowledge related to the target. Experiments on three benchmark datasets: MSRA-TD500, ICDAR 2015 and Total-Text, show that our proposed knowledge distillation via entropy map consistently improve the F1-score of the student network and is better than the other three mainstream knowledge distillation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梦灵发布了新的文献求助10
刚刚
zyj发布了新的文献求助10
刚刚
1秒前
研友_ngJQzL发布了新的文献求助10
2秒前
Jasper应助bluesea采纳,获得100
4秒前
科研废物完成签到 ,获得积分10
5秒前
田茂青发布了新的文献求助10
6秒前
高兴的彩虹完成签到,获得积分10
6秒前
英俊绿柏应助lkk采纳,获得10
6秒前
22222发布了新的文献求助10
7秒前
阔达凝天完成签到 ,获得积分10
8秒前
Ccccn完成签到,获得积分10
8秒前
WPY完成签到,获得积分10
10秒前
研友_ngJQzL完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
12秒前
JamesPei应助Hayat采纳,获得20
14秒前
怡然小蚂蚁完成签到 ,获得积分10
14秒前
冷酷愚志完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
xiaozhao发布了新的文献求助10
19秒前
白兔发布了新的文献求助20
20秒前
20秒前
20秒前
田茂青完成签到,获得积分10
21秒前
方东完成签到,获得积分10
23秒前
ttb关闭了ttb文献求助
23秒前
flasher22发布了新的文献求助10
23秒前
24秒前
xzh发布了新的文献求助10
24秒前
Akim应助阿九采纳,获得10
27秒前
28秒前
郭致悦完成签到,获得积分10
28秒前
makabaka发布了新的文献求助10
30秒前
VanessaW完成签到,获得积分10
30秒前
IyGnauH发布了新的文献求助10
32秒前
云漫山完成签到 ,获得积分10
32秒前
xxxx发布了新的文献求助10
34秒前
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958130
求助须知:如何正确求助?哪些是违规求助? 3504312
关于积分的说明 11117892
捐赠科研通 3235623
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547