亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Geographical identification of Italian extra virgin olive oil by the combination of near infrared and Raman spectroscopy: A feasibility study

偏最小二乘回归 线性判别分析 拉曼光谱 橄榄油 光谱学 分析化学(期刊) 近红外光谱 融合 模式识别(心理学) 交叉验证 化学计量学 灵敏度(控制系统) 数学 人工智能 化学 材料科学 统计 食品科学 计算机科学 色谱法 物理 光学 工程类 哲学 语言学 量子力学 电子工程
作者
Marco Bragolusi,Andrea Massaro,Carmela Zacometti,Alessandra Tata,Roberto Piro
出处
期刊:Journal of Near Infrared Spectroscopy [SAGE]
卷期号:29 (6): 359-365 被引量:11
标识
DOI:10.1177/09670335211051575
摘要

The potential of the combination of near infrared (NIR) spectroscopy and Raman spectroscopy to differentiate Italian and Greek extra virgin olive oil (EVOO) by geographical origin was evaluated. Near infrared spectroscopy and Raman fingerprints of both study groups (extra virgin olive oil from the two countries) were pre-processed, merged by low-level and mid-level data fusion strategies and submitted to partial least-squares discriminant analysis. The classification models were cross-validated. After low-level data fusion, the partial least-squares discriminant analysis correctly predicted the geographical origins of extra virgin olive oils in cross-validation with 93.9% accuracy, while sensitivity and specificity were 77.8% and 100%, respectively. After mid-level data fusion, the partial least-squares discriminant analysis correctly predicted the geographical origins of extra virgin olive oils in cross-validation with 97.0% accuracy, while sensitivity and specificity were 88.9% and 100%, respectively. In this preliminary study, improved discrimination of Italian extra virgin olive oils was achieved by the synergism of near infrared spectroscopy and Raman spectroscopy as compared to the discrimination obtained by the separate laboratory techniques. This pilot study shows encouraging results that could open a new avenue for the authentication of Italian extra virgin olive oil.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助zzzzqqqq采纳,获得10
1秒前
9秒前
shuoliu完成签到 ,获得积分10
9秒前
北地风情完成签到 ,获得积分10
9秒前
zzzzqqqq发布了新的文献求助10
13秒前
zzzzqqqq完成签到,获得积分20
17秒前
18秒前
19秒前
24秒前
香蕉觅云应助呆萌的访枫采纳,获得10
26秒前
伊祁夜明完成签到,获得积分10
27秒前
li发布了新的文献求助10
29秒前
li完成签到,获得积分10
36秒前
39秒前
一个好昵称完成签到 ,获得积分10
39秒前
42秒前
一日落叶发布了新的文献求助10
45秒前
搜集达人应助光轮2000采纳,获得10
51秒前
56秒前
hahahan完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
丛士乔完成签到 ,获得积分10
1分钟前
星辰大海应助cjfc采纳,获得10
1分钟前
000发布了新的文献求助10
1分钟前
光轮2000发布了新的文献求助10
1分钟前
uery完成签到,获得积分10
1分钟前
蓝胖子发布了新的文献求助10
1分钟前
1分钟前
香豆素完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
典雅绮兰完成签到 ,获得积分10
1分钟前
cjfc发布了新的文献求助10
1分钟前
NexusExplorer应助mm采纳,获得10
1分钟前
lijiawei完成签到,获得积分10
1分钟前
1分钟前
Ava应助cjfc采纳,获得10
1分钟前
Mr完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603230
求助须知:如何正确求助?哪些是违规求助? 4688306
关于积分的说明 14853219
捐赠科研通 4687948
什么是DOI,文献DOI怎么找? 2540480
邀请新用户注册赠送积分活动 1506962
关于科研通互助平台的介绍 1471508