材料科学
微观结构
焊接
复合材料
复合数
抗剪强度(土壤)
碳纳米管
相(物质)
图层(电子)
环境科学
土壤科学
土壤水分
有机化学
化学
作者
Yaocheng Zhang,Zheng Liu,Li Yang,Yifeng Xiong
标识
DOI:10.1016/j.jmapro.2021.11.001
摘要
InSn-50Ag composite solder joints doping Ni-coated carbon nanotubes (Ni-CNTs) were fabricated by transient liquid phase (TLP) bonding, and then the effect of Ni-CNTs contents (x = 0, 0.01, 0.03, 0.05, 0.07, 0.1 wt%) on the microstructure and shear property of the composite solder joints was examined. The results showed that the microstructure of Cu/InSn-50Ag-x(Ni-CNTs)/Cu composite solder joints consisted of the interfacial region bamboo-type Cu3(In, Sn), solder center region Ag3In, Ni3Sn4, Ag particles and Ni-CNTs. The appropriate amounts of Ni-CNTs (about 0.07 wt%) are conducive to form a compact composite solder joint and restrain the growth of interfacial Cu3(In, Sn) IMC layer, and the morphologies of IMC layer are determined by Ni-CNTs suppressing atom diffusion and IMC grain orientation. The shear strength of composite solder joints relates to Ni-CNTs content, and the maximum shear strength reaches 42 MPa of Cu/InSn-50Ag-0.07(Ni-CNTs)/Cu. It is regulated by uniform distribution of Ni-CNTs, refined Ag3In grains and interface IMC layer with near-continuous voids. The fracture of the composite solder joints doped Ni-CNTs occurred near to the boundary between the interfacial IMC layer and solder center region, the fracture mechanism is ductile fracture.
科研通智能强力驱动
Strongly Powered by AbleSci AI