已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel fault diagnosis method based on CNN and LSTM and its application in fault diagnosis for complex systems

计算机科学 断层(地质) 卷积神经网络 人工智能 特征提取 特征(语言学) 滑动窗口协议 噪音(视频) 深度学习 人工神经网络 模式识别(心理学) 机器学习 数据挖掘 窗口(计算) 图像(数学) 哲学 地质学 地震学 操作系统 语言学
作者
Ting Huang,Qiang Zhang,Xiaoan Tang,Shuangyao Zhao,Xiaonong Lu
出处
期刊:Artificial Intelligence Review [Springer Nature]
卷期号:55 (2): 1289-1315 被引量:98
标识
DOI:10.1007/s10462-021-09993-z
摘要

Fault diagnosis plays an important role in actual production activities. As large amounts of data can be collected efficiently and economically, data-driven methods based on deep learning have achieved remarkable results of fault diagnosis of complex systems due to their superiority in feature extraction. However, existing techniques rarely consider time delay of occurrence of faults, which affects the performance of fault diagnosis. In this paper, by synthetically considering feature extraction and time delay of occurrence of faults, we propose a novel fault diagnosis method that consists of two parts, namely, sliding window processing and CNN-LSTM model based on a combination of Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM). Firstly, samples obtained from multivariate time series by the sliding window processing integrates feature information and time delay information. Then, the obtained samples are fed into the proposed CNN-LSTM model including CNN layers and LSTM layers. The CNN layers perform feature learning without relying on prior knowledge. Time delay information is captured with the use of the LSTM layers. The fault diagnosis of the Tennessee Eastman chemical process is addressed, and it is verified that the predictive accuracy and noise sensitivity of fault diagnosis can be greatly improved when the proposed method is applied. Comparisons with five existing fault diagnosis methods show the superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谦让寄容发布了新的文献求助10
刚刚
plumephoenix完成签到,获得积分10
刚刚
6秒前
ranqi完成签到,获得积分10
11秒前
11秒前
wsh发布了新的文献求助10
12秒前
Xu完成签到 ,获得积分10
17秒前
18秒前
qi完成签到 ,获得积分10
23秒前
甜甜问儿发布了新的文献求助10
23秒前
27秒前
27秒前
Singularity发布了新的文献求助10
32秒前
33秒前
幽默赛君完成签到 ,获得积分10
34秒前
34秒前
为十完成签到 ,获得积分10
34秒前
顾矜应助喜悦秋白采纳,获得10
35秒前
35秒前
35秒前
叶95发布了新的文献求助10
36秒前
充电宝应助adinike采纳,获得10
37秒前
wyl完成签到 ,获得积分10
38秒前
39秒前
shaco完成签到,获得积分10
39秒前
40秒前
40秒前
星辰大海应助Singularity采纳,获得10
42秒前
42秒前
zhangshenlan发布了新的文献求助10
46秒前
46秒前
kkkwww发布了新的文献求助10
47秒前
伊绵好完成签到,获得积分10
48秒前
陌路人完成签到,获得积分10
48秒前
CipherSage应助受伤雁荷采纳,获得10
49秒前
不配.应助叶95采纳,获得40
49秒前
49秒前
沐阳完成签到,获得积分10
50秒前
51秒前
52秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234378
求助须知:如何正确求助?哪些是违规求助? 2880736
关于积分的说明 8216789
捐赠科研通 2548319
什么是DOI,文献DOI怎么找? 1377665
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623304