An integrative method based on UHPLC-Q-TOF-MS/MS combined with metabolomics to authenticate Isodon rubescens

代谢组学 主成分分析 色谱法 偏最小二乘回归 传统医学 化学 中医药 计算生物学 生物 数学 医学 计算机科学 人工智能 统计 病理 替代医学
作者
Weiwei Xie,Yinghua Ma,Wenjing Sun,Shuai Guan,Yiran Jin,Yingfeng Du
出处
期刊:Analytical Biochemistry [Elsevier BV]
卷期号:629: 114297-114297 被引量:4
标识
DOI:10.1016/j.ab.2021.114297
摘要

Genuine regional drugs have played a vital role in clinical use for a long time. There are differences in traditional Chinese medicines (TCM) from different regions based on their chemical composition. Differences in chemical composition may lead to deviations in therapeutic effects. To our knowledge, to date, there are no effective methods for distinguishing genuine regional drugs based on the differences in their chemical composition. Therefore, establishing an analytical platform for distinguishing the compounds used in TCM from various geographical locations is essential. In this work, an integrated platform based on UPLC-Q-TOF-MS/MS combined with plant metabolomics approach was established for comprehensively distinguishing genuine regional drugs. Isodon rubescens (Hemsl.) Hara, a widely used herbal medicine of China, was chosen for this study and 24 samples from four geographical locations in China were collected. A total of 60 ent-kaurane diterpenoids were tentatively identified, and then the samples from four geographical origins were distinguished using PCA (principal component analysis) and PLS-DA (partial least squares discrimination analysis). Different compounds were identified among the samples collected from the four geographical locations, and 12 of them were regarded as marker compounds responsible for the distinction. Our study highlights the essence and predictive ability of metabolomics in detecting minute differences in the same varieties of TCM samples based on the levels and compositions of their metabolites. These results showed that the analysis using UHPLC-Q-TOF-MS/MS combined with metabolomics could be applied to distinguish the geographical origins and varieties of TCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wen_xxx发布了新的文献求助10
刚刚
无私追命发布了新的文献求助10
8秒前
9秒前
传奇3应助domingo采纳,获得10
10秒前
Jupiter关注了科研通微信公众号
10秒前
10秒前
小蘑菇应助wys采纳,获得10
13秒前
JamesPei应助醉熏的鑫采纳,获得10
15秒前
15秒前
孙淼发布了新的文献求助10
18秒前
红星路吃饼子的派大星完成签到 ,获得积分10
19秒前
jia完成签到 ,获得积分10
22秒前
24秒前
彭于晏应助内向书白采纳,获得10
24秒前
情怀应助huxley1121采纳,获得10
25秒前
大模型应助咕噜坚果采纳,获得10
26秒前
照照完成签到,获得积分10
26秒前
bbihk完成签到,获得积分10
30秒前
34秒前
Clover完成签到 ,获得积分10
35秒前
顾矜应助zdd采纳,获得10
36秒前
39秒前
40秒前
潇洒的半梅完成签到,获得积分10
41秒前
深情夏彤发布了新的文献求助10
41秒前
42秒前
腿腿完成签到,获得积分10
43秒前
44秒前
44秒前
wys发布了新的文献求助10
45秒前
wbh发布了新的文献求助10
46秒前
48秒前
咕噜坚果发布了新的文献求助10
50秒前
50秒前
顺顺完成签到,获得积分10
50秒前
52秒前
快乐若颜发布了新的文献求助10
53秒前
ZT发布了新的文献求助10
54秒前
今后应助wbh采纳,获得10
55秒前
打打应助青云采纳,获得10
56秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993151
求助须知:如何正确求助?哪些是违规求助? 3534027
关于积分的说明 11264447
捐赠科研通 3273745
什么是DOI,文献DOI怎么找? 1806151
邀请新用户注册赠送积分活动 883016
科研通“疑难数据库(出版商)”最低求助积分说明 809652