Microstructural rejuvenation in a Ni-based single crystal superalloy

高温合金 微观结构 材料科学 再结晶(地质) 冶金 蠕动 退火(玻璃) 合金 动态再结晶 极限抗拉强度 热加工 地质学 古生物学
作者
Xiaoping Yao,Qingqing Ding,Xinbao Zhao,Xiao Wei,Jianguo Wang,Zhiyuan Zhang,Hongbin Bei
出处
期刊:Materials Today Nano [Elsevier]
卷期号:17: 100152-100152 被引量:15
标识
DOI:10.1016/j.mtnano.2021.100152
摘要

In the modern turbine blade industry, one of the most significant innovations is the successful application of single crystal (SX) Ni-based superalloys, which push the parts in the hot section running in a harsher environment with longer lifetime. During service under combinational impacts of thermal and stress, the SX superalloy might fail and reach its life owing to the microstructural degradation/damage. Two kinds of degradation microstructures, caused by tensile creep and compression at various temperatures, are obtained to investigate the possibility to rejuvenate their initial well-defined microstructures and still keep SX in nature. Defect and microstructural evidence on every processing step have been carefully analyzed to understand the rejuvenation mechanisms of the alloy with the help of advanced microscopes. In all rejuvenation processes, the γ/γ′ two-phase cuboid microstructure can be restored by solid solution plus aging treatment. The specimen crept at 1050 °C with tensile strain ∼1.5% can be fully restored, and SX nature remains, but not for all compressed alloys, where SX nature loses owing to recrystallization. For the compressed alloys, the heat treatment method with additional recovery annealing is successful to surpass the recrystallization in samples with ∼1.5% compressive strain. The mechanism for the additional recovery annealing to overcome recrystallization is justified based on defect analysis in nanometer scales. Our results may provide microstructure/defect guidelines to rejuvenate the Ni-based SX superalloys by preventing the formation of the polycrystalline microstructure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangyitong发布了新的文献求助10
刚刚
刚刚
lily完成签到,获得积分10
刚刚
顾矜应助小胡爱学习采纳,获得10
1秒前
2秒前
hyh完成签到,获得积分10
2秒前
健壮的诗槐完成签到,获得积分20
3秒前
须眉交白完成签到,获得积分10
3秒前
临风不自傲完成签到 ,获得积分10
3秒前
老福贵儿应助LLLLLL采纳,获得10
4秒前
徐若楠完成签到,获得积分10
4秒前
丰知然应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
丰知然应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
丰知然应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
丰知然应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
6秒前
阿谈应助行简采纳,获得10
6秒前
共享精神应助Jason采纳,获得10
7秒前
7秒前
amber完成签到,获得积分10
8秒前
cl完成签到,获得积分10
8秒前
8秒前
XIEYIHAN完成签到 ,获得积分10
10秒前
zzzz发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
16秒前
诚心宛筠应助欣喜芙采纳,获得10
18秒前
18秒前
qqqqy完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613612
求助须知:如何正确求助?哪些是违规求助? 4698726
关于积分的说明 14898834
捐赠科研通 4736726
什么是DOI,文献DOI怎么找? 2547094
邀请新用户注册赠送积分活动 1511026
关于科研通互助平台的介绍 1473571