Marine traffic profile for enhancing situational awareness based on complex network theory

形势意识 成对比较 计算机科学 交通生成模型 上游(联网) 数据挖掘 运输工程 工程类 实时计算 计算机网络 人工智能 航空航天工程
作者
Zhongyi Sui,Yamin Huang,Yuanqiao Wen,Chunhui Zhou,Xi Huang
出处
期刊:Ocean Engineering [Elsevier]
卷期号:241: 110049-110049 被引量:8
标识
DOI:10.1016/j.oceaneng.2021.110049
摘要

Enhancing Situation Awareness (SA) is essential for the safety of marine traffic. Many indicators are developed to evaluate the status of the traffic and to facilitate SA of the Vessel Traffic Service Operators (VTSOs), such as collision risk, traffic complexity, etc. Many of these indicators are based on the pairwise encounters between ships, without considering the influence from the third objects. However, the mechanism to look beyond the pairwise encounters is important for marine traffic management. In this paper, a framework for evaluating the Marine Traffic Situation (MTS) is developed, which treats the traffic as an entire object instead of pairs of ships. The complex network theory is employed and the traffic is modelled as a virtual network, called Marine Traffic Situation Complex Network (MTSCN). The topological properties of the MTSCN compose the state vector reflecting the profile of the MTS. The MTS having similar profiles are categorized as one traffic pattern using Random Forest Algorithm, which can help the VTSOs to understand the traffic situation and to take control measures. Simulations are introduced to investigate the sensitivity of the proposed method with respect to parameters, and real traffic data from Yangtze River is used to demonstrate the performance of the proposed method. The MTS patterns in upstream area and downstream area can be divided into 3 classes and 2 classes respectively. The results are consistent with expert evaluation results and show that this method can construct a state vector describing the traffic profile and identify different traffic patterns reflecting key characteristics of the traffic. Additionally, the identified profile and pattern enhance the SA of VTSOs by supporting decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LTT417发布了新的文献求助20
刚刚
樱花喵应助胖虎采纳,获得10
1秒前
pop完成签到,获得积分10
1秒前
ZRDJ发布了新的文献求助10
2秒前
wanna发布了新的文献求助10
2秒前
田様应助陈小白采纳,获得10
3秒前
3秒前
彭于晏应助hhj02采纳,获得10
3秒前
4秒前
123发布了新的文献求助10
4秒前
yxy发布了新的文献求助10
4秒前
大壮应助Yewen采纳,获得10
5秒前
隐形的雪碧完成签到,获得积分10
5秒前
ddj发布了新的文献求助10
6秒前
7秒前
9秒前
暮城发布了新的文献求助10
9秒前
拓跋半雪完成签到,获得积分10
10秒前
10秒前
小蘑菇应助日升月采纳,获得10
10秒前
小陈发布了新的文献求助10
11秒前
ding应助BZPL采纳,获得10
11秒前
li完成签到 ,获得积分10
11秒前
11秒前
顾矜应助小灰飞采纳,获得30
11秒前
研友_VZG7GZ应助简单的冥采纳,获得10
11秒前
11秒前
顾矜应助cc采纳,获得10
13秒前
cocolu应助阳光奎采纳,获得10
13秒前
万能图书馆应助yanxun采纳,获得10
14秒前
小菜鸟001应助shred采纳,获得10
15秒前
17秒前
wdw2501发布了新的文献求助10
17秒前
一米阳光完成签到,获得积分20
18秒前
18秒前
小马甲应助everglow采纳,获得30
18秒前
19秒前
19秒前
aefs发布了新的文献求助10
20秒前
20秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470559
求助须知:如何正确求助?哪些是违规求助? 3063526
关于积分的说明 9084066
捐赠科研通 2754015
什么是DOI,文献DOI怎么找? 1511182
邀请新用户注册赠送积分活动 698310
科研通“疑难数据库(出版商)”最低求助积分说明 698182