清脆的
DNA运算
计算机科学
DNA
Cas9
计算生物学
生物
遗传学
基因
作者
Jiongyu Zhang,Changchun Liu
标识
DOI:10.1021/acssynbio.1c00431
摘要
Clustered regularly interspaced short palindromic repeats (CRISPR) technology has unique specificity for recognizing and cleaving target DNA complementary to the CRISPR guide sequence. Here, we report on a CRISPR-powered DNA computing and digital display system in which programmed DNA targets serve as the input and an ON/OFF fluorescence signal indicates a TRUE/FALSE output. This system allows the establishment of a one-to-one relationship between input and output, enabling multilevel DNA logic computing. Applying pre-CRISPR reactions that selectively maintain or inhibit CRISPR reactivity can further improve the computing capability by expanding input size. In particular, we present a paper-based microfluidic chip with freeze-dried CRISPR reaction mixtures that are programmed to digitally display the results of functional operations, including square, cube, and square-root operations. This strategy allows information decoding and displaying as well, which brings potential in next-generation DNA steganography and cryptography. We envision that the intrinsic orthogonality of CRISPR provides a new paradigm for DNA computing and molecular programming.
科研通智能强力驱动
Strongly Powered by AbleSci AI