On the Application of Machine Learning in Savonius Wind Turbine Technology: An Estimation of Turbine Performance Using Artificial Neural Network and Genetic Expression Programming

人工神经网络 转子(电动) 遗传程序设计 涡轮机 MATLAB语言 基因表达程序设计 遗传算法 风速 工程类 风力发电 控制理论(社会学) 计算机科学 人工智能 机器学习 机械工程 操作系统 电气工程 物理 气象学 控制(管理)
作者
Umang H. Rathod,Vinayak Kulkarni,Ujjwal K. Saha
出处
期刊:Journal of Energy Resources Technology-transactions of The Asme [ASM International]
卷期号:144 (6) 被引量:26
标识
DOI:10.1115/1.4051736
摘要

Abstract This article addresses the application of artificial neural network (ANN) and genetic expression programming (GEP), the popular artificial intelligence, and machine learning methods to estimate the Savonius wind rotor’s performance based on different independent design variables. Savonius wind rotor is one of the competent members of the vertical-axis wind turbines (VAWTs) due to its advantageous qualities such as direction independency, design simplicity, ability to perform at low wind speeds, and potent standalone system. The available experimental data on Savonius wind rotor have been used to train the ANN and GEP using matlab r2020b and genexprotools 5.0 software, respectively. The input variables used in ANN and GEP architecture include newly proposed design shape factors, number of blades and stages, gap and overlap lengths, height and diameter of the rotor, freestream velocity, end plate diameter, and tip speed ratio besides the cross-sectional area of the wind tunnel test section. Based on this, the unknown governing function constituted by the aforementioned input variables is established using ANN and GEP to approximate/forecast the rotor performance as an output. The governing equation formulated by ANN is in the form of weights and biases, while GEP provides it in the form of traditional mathematical functions. The trained ANN and GEP are capable to estimate the rotor performance with R2 ≈ 0.97 and R2 ≈ 0.65, respectively, in correlation with the reported experimental rotor performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jinjinj发布了新的文献求助10
1秒前
Zkxxxx应助想写文章的绿采纳,获得30
1秒前
1秒前
幸福的尔竹完成签到,获得积分10
2秒前
3秒前
Ava应助绝望核弹采纳,获得10
3秒前
3秒前
斯文败类应助凌惠娟采纳,获得10
3秒前
大模型应助罗婉婷采纳,获得10
3秒前
Cactus应助王某明采纳,获得10
4秒前
田様应助雪雪儿采纳,获得10
4秒前
Frank发布了新的文献求助10
5秒前
5秒前
无花果应助轻松的万恶采纳,获得10
5秒前
6秒前
www发布了新的文献求助10
6秒前
研友_VZG64n发布了新的文献求助10
7秒前
7秒前
光光完成签到,获得积分10
8秒前
slp123456完成签到,获得积分20
8秒前
9秒前
1234发布了新的文献求助10
9秒前
无花果应助一鸣采纳,获得10
10秒前
10秒前
11秒前
时米米米发布了新的文献求助10
11秒前
大模型应助xinying采纳,获得10
11秒前
12秒前
12秒前
陌生完成签到 ,获得积分10
13秒前
领导范儿应助淡然的夜柳采纳,获得10
13秒前
14秒前
17秒前
JamesPei应助1234645678采纳,获得10
18秒前
18秒前
小二郎应助小盼虫采纳,获得10
18秒前
18秒前
19秒前
ttm发布了新的文献求助30
19秒前
蜡笔完成签到,获得积分10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958843
求助须知:如何正确求助?哪些是违规求助? 3505092
关于积分的说明 11122284
捐赠科研通 3236543
什么是DOI,文献DOI怎么找? 1788854
邀请新用户注册赠送积分活动 871424
科研通“疑难数据库(出版商)”最低求助积分说明 802788