已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A proactive lane-changing risk prediction framework considering driving intention recognition and different lane-changing patterns

人工神经网络 计算机科学 人工智能 高级驾驶员辅助系统 机器学习 桥(图论) 驾驶模拟器 特征(语言学) 语言学 医学 内科学 哲学
作者
Qiangqiang Shangguan,Ting Fu,Junhua Wang,Shouen Fang,Liping Fu
出处
期刊:Accident Analysis & Prevention [Elsevier BV]
卷期号:164: 106500-106500 被引量:48
标识
DOI:10.1016/j.aap.2021.106500
摘要

Proactive lane-changing (LC) risk prediction can assist driver's LC decision-making to ensure driving safety. However, most previous studies on LC risk prediction did not consider the driver's intention recognition, which made it difficult to guarantee the timeliness and practicability of LC risk prediction. Moreover, the difference in driving risks and its influencing factors between LC to left lane (LCL) and LC to right lane (LCR) have rarely been investigated. To bridge the above research gaps, this study proposes a proactive LC risk prediction framework which integrates the LC intention recognition module and LC risk prediction module. The Long Short-term Memory (LSTM) neural network with time-series input was employed to recognize the driver's LC intention. The Light Gradient Boosting Machine (LGBM) algorithm was then applied to predict the LC risk. Feature importance analysis was lastly conducted to obtain the key features that affect the LC risk. The highD trajectory dataset was used for framework validation. Results show that the recognition accuracy of the driver's LCL, LCR and lane-keeping (LK) intentions based on the proposed LSTM model are 97%, 96% and 97%, respectively. Meanwhile, the LGBM algorithm outperforms other machine learning algorithms in LC risk prediction. The results from feature importance analysis show that the interaction characteristics of the LC vehicle and its preceding vehicle in the current lane have the greatest impact on the LC risk. The proposed framework could potentially be implemented in advanced driver-assistance system (ADAS) or autonomous driving system for improved driving safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
buno发布了新的文献求助30
4秒前
顾矜应助外向的不尤采纳,获得10
4秒前
6秒前
8秒前
sunshinegirl发布了新的文献求助10
11秒前
11秒前
111完成签到,获得积分10
12秒前
赘婿应助lvsehx采纳,获得10
12秒前
12秒前
xiaomeng完成签到 ,获得积分10
13秒前
15秒前
15秒前
胡萝卜完成签到,获得积分10
17秒前
热心盼波发布了新的文献求助30
17秒前
18秒前
19秒前
熊泰山发布了新的文献求助10
19秒前
19秒前
22秒前
22秒前
绿野仙踪完成签到,获得积分20
23秒前
英俊的铭应助sunshinegirl采纳,获得10
25秒前
26秒前
111发布了新的文献求助10
26秒前
勤奋的凌香完成签到,获得积分10
27秒前
28秒前
曦小蕊完成签到 ,获得积分10
29秒前
情怀应助会撒娇的如天采纳,获得10
29秒前
PL发布了新的文献求助10
31秒前
大模型应助科研通管家采纳,获得10
32秒前
orixero应助科研通管家采纳,获得10
32秒前
脑洞疼应助科研通管家采纳,获得10
32秒前
科目三应助科研通管家采纳,获得10
32秒前
sksk完成签到,获得积分10
34秒前
35秒前
sksk发布了新的文献求助30
38秒前
雷雷发布了新的文献求助30
39秒前
优美平凡完成签到,获得积分10
41秒前
43秒前
43秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994433
求助须知:如何正确求助?哪些是违规求助? 3534839
关于积分的说明 11266585
捐赠科研通 3274665
什么是DOI,文献DOI怎么找? 1806453
邀请新用户注册赠送积分活动 883291
科研通“疑难数据库(出版商)”最低求助积分说明 809749