已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A proactive lane-changing risk prediction framework considering driving intention recognition and different lane-changing patterns

人工神经网络 计算机科学 人工智能 高级驾驶员辅助系统 机器学习 桥(图论) 驾驶模拟器 特征(语言学) 语言学 医学 内科学 哲学
作者
Qiangqiang Shangguan,Ting Fu,Junhua Wang,Shouen Fang,Liping Fu
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:164: 106500-106500 被引量:48
标识
DOI:10.1016/j.aap.2021.106500
摘要

Proactive lane-changing (LC) risk prediction can assist driver's LC decision-making to ensure driving safety. However, most previous studies on LC risk prediction did not consider the driver's intention recognition, which made it difficult to guarantee the timeliness and practicability of LC risk prediction. Moreover, the difference in driving risks and its influencing factors between LC to left lane (LCL) and LC to right lane (LCR) have rarely been investigated. To bridge the above research gaps, this study proposes a proactive LC risk prediction framework which integrates the LC intention recognition module and LC risk prediction module. The Long Short-term Memory (LSTM) neural network with time-series input was employed to recognize the driver's LC intention. The Light Gradient Boosting Machine (LGBM) algorithm was then applied to predict the LC risk. Feature importance analysis was lastly conducted to obtain the key features that affect the LC risk. The highD trajectory dataset was used for framework validation. Results show that the recognition accuracy of the driver's LCL, LCR and lane-keeping (LK) intentions based on the proposed LSTM model are 97%, 96% and 97%, respectively. Meanwhile, the LGBM algorithm outperforms other machine learning algorithms in LC risk prediction. The results from feature importance analysis show that the interaction characteristics of the LC vehicle and its preceding vehicle in the current lane have the greatest impact on the LC risk. The proposed framework could potentially be implemented in advanced driver-assistance system (ADAS) or autonomous driving system for improved driving safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不甜完成签到 ,获得积分10
2秒前
xiaofeiyan完成签到 ,获得积分10
2秒前
129753完成签到,获得积分10
3秒前
4秒前
492357816完成签到,获得积分10
7秒前
萍萍无奇发布了新的文献求助10
9秒前
默默荔枝完成签到 ,获得积分10
11秒前
廿廿完成签到,获得积分10
12秒前
13秒前
zhang完成签到,获得积分20
14秒前
追三完成签到 ,获得积分10
18秒前
Jenny完成签到,获得积分10
20秒前
不安栾完成签到,获得积分10
20秒前
xxx完成签到 ,获得积分10
22秒前
衣裳薄完成签到,获得积分10
24秒前
深情安青应助agfojd采纳,获得10
30秒前
小二郎应助萍萍无奇采纳,获得10
37秒前
chuhong完成签到 ,获得积分10
37秒前
红黄蓝完成签到 ,获得积分10
41秒前
lango完成签到 ,获得积分10
41秒前
fsylld233完成签到,获得积分10
43秒前
51秒前
拓跋幻枫完成签到,获得积分10
53秒前
55秒前
55秒前
bkagyin应助科研通管家采纳,获得10
55秒前
agfojd发布了新的文献求助10
56秒前
xiaowang完成签到 ,获得积分10
1分钟前
Hanny完成签到 ,获得积分10
1分钟前
wang完成签到 ,获得积分10
1分钟前
华仔应助一条大盒盒采纳,获得10
1分钟前
小强x完成签到 ,获得积分10
1分钟前
weiyy完成签到 ,获得积分10
1分钟前
CodeCraft应助rerorero18采纳,获得10
1分钟前
传奇3应助Kiki采纳,获得10
1分钟前
1分钟前
1分钟前
慕青应助冉亦采纳,获得20
1分钟前
1分钟前
nenoaowu完成签到,获得积分10
1分钟前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139446
求助须知:如何正确求助?哪些是违规求助? 2790340
关于积分的说明 7795024
捐赠科研通 2446818
什么是DOI,文献DOI怎么找? 1301390
科研通“疑难数据库(出版商)”最低求助积分说明 626219
版权声明 601141