A proactive lane-changing risk prediction framework considering driving intention recognition and different lane-changing patterns

人工神经网络 计算机科学 人工智能 高级驾驶员辅助系统 机器学习 桥(图论) 驾驶模拟器 特征(语言学) 语言学 医学 内科学 哲学
作者
Qiangqiang Shangguan,Ting Fu,Junhua Wang,Shouen Fang,Liping Fu
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:164: 106500-106500 被引量:48
标识
DOI:10.1016/j.aap.2021.106500
摘要

Proactive lane-changing (LC) risk prediction can assist driver's LC decision-making to ensure driving safety. However, most previous studies on LC risk prediction did not consider the driver's intention recognition, which made it difficult to guarantee the timeliness and practicability of LC risk prediction. Moreover, the difference in driving risks and its influencing factors between LC to left lane (LCL) and LC to right lane (LCR) have rarely been investigated. To bridge the above research gaps, this study proposes a proactive LC risk prediction framework which integrates the LC intention recognition module and LC risk prediction module. The Long Short-term Memory (LSTM) neural network with time-series input was employed to recognize the driver's LC intention. The Light Gradient Boosting Machine (LGBM) algorithm was then applied to predict the LC risk. Feature importance analysis was lastly conducted to obtain the key features that affect the LC risk. The highD trajectory dataset was used for framework validation. Results show that the recognition accuracy of the driver's LCL, LCR and lane-keeping (LK) intentions based on the proposed LSTM model are 97%, 96% and 97%, respectively. Meanwhile, the LGBM algorithm outperforms other machine learning algorithms in LC risk prediction. The results from feature importance analysis show that the interaction characteristics of the LC vehicle and its preceding vehicle in the current lane have the greatest impact on the LC risk. The proposed framework could potentially be implemented in advanced driver-assistance system (ADAS) or autonomous driving system for improved driving safety.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
高xuewen完成签到,获得积分10
刚刚
迷人绿柏发布了新的文献求助10
刚刚
SciKid524完成签到 ,获得积分10
刚刚
刚刚
aaaar完成签到 ,获得积分10
1秒前
CipherSage应助邓晓云采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
162完成签到 ,获得积分10
2秒前
茶多酚完成签到,获得积分10
2秒前
鹏飞九霄完成签到,获得积分10
2秒前
雨季完成签到,获得积分10
2秒前
benben01完成签到,获得积分10
2秒前
辛勤者完成签到,获得积分10
3秒前
3秒前
说话的月亮完成签到,获得积分10
3秒前
Clara完成签到,获得积分10
3秒前
大傻春完成签到,获得积分10
3秒前
ronaldo发布了新的文献求助10
4秒前
xx发布了新的文献求助10
4秒前
听星伴月发布了新的文献求助10
4秒前
gengtx发布了新的文献求助10
4秒前
书蠹诗魔完成签到,获得积分10
4秒前
小曼发布了新的文献求助10
5秒前
张张张张闭嘴完成签到,获得积分20
5秒前
mm完成签到 ,获得积分10
5秒前
鹄之梦2006完成签到,获得积分10
5秒前
慢一拍完成签到,获得积分10
5秒前
左丘以云完成签到,获得积分10
5秒前
5秒前
ZXL发布了新的文献求助10
5秒前
xiaohuang发布了新的文献求助10
6秒前
笨蛋小章发布了新的文献求助10
6秒前
小老虎关注了科研通微信公众号
6秒前
7秒前
青柠完成签到 ,获得积分10
8秒前
大地完成签到,获得积分10
8秒前
昭玥完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645392
求助须知:如何正确求助?哪些是违规求助? 4768659
关于积分的说明 15028508
捐赠科研通 4803961
什么是DOI,文献DOI怎么找? 2568583
邀请新用户注册赠送积分活动 1525914
关于科研通互助平台的介绍 1485551