作者
André Euler,Kai Higashigaito,Victor Mergen,Thomas Sartoretti,Bettina Zanini,Bernhard Schmidt,Thomas Flohr,Stefan Ulzheimer,Matthias Eberhard,Hatem Alkadhi
摘要
PURPOSE
The aims of this study were to determine the objective and subjective image quality of high-pitch computed tomography (CT) angiography of the aorta in clinical dual-source photon-counting detector CT (PCD-CT) and to compare the image quality to conventional dual-source energy-integrating detector CT (EID-CT) in the same patients at equal radiation dose.
MATERIALS AND METHODS
Patients with prior CT angiography of the thoracoabdominal aorta acquired on third-generation dual-source EID-CT in the high-pitch mode and with automatic tube voltage selection (ATVS, reference tube voltage 100 kV) were included. Follow-up imaging was performed on a first-generation, clinical dual-source PCD-CT scanner in the high-pitch and multienergy (QuantumPlus) mode at 120 kV using the same contrast media protocol as with EID-CT. Radiation doses between scans were matched by adapting the tube current of PCD-CT. Polychromatic images for both EID-CT and PCD-CT (called T3D) and virtual monoenergetic images at 40, 45, 50, and 55 keV for PCD-CT were reconstructed. Computed tomography attenuation was measured in the aorta; noise was defined as the standard deviation of attenuation; contrast-to-noise ratio (CNR) was calculated. Subjective image quality (noise, vessel attenuation, vessel sharpness, and overall quality) was rated by 2 blinded, independent radiologists.
RESULTS
Forty patients were included (mean age, 63 years; 8 women; mean body mass index [BMI], 26 kg/m2). There was no significant difference in BMI, effective diameter, or radiation dose between scans (all P's > 0.05). The ATVS in EID-CT selected 70, 80, 90, 100, 110, and 120 kV in 2, 14, 14, 7, 2, and 1 patients, respectively. Mean CNR was 17 ± 8 for EID-CT and 22 ± 7, 20 ± 6, 18 ± 5, 16 ± 5, and 12 ± 4 for PCD-CT at 40, 45, 50, 55 keV, and T3D, respectively. Contrast-to-noise ratio was significantly higher for 40 and 45 keV of PCD-CT as compared with EID-CT (both P's 0.05) between scans.
CONCLUSIONS
High-pitch PCD-CT angiography of the aorta with VMI at 40 and 45 keV resulted in significantly increased CNR compared with EID-CT with ATVS at matched radiation dose. The CNR gain of PCD-CT increased in overweight patients. Taking into account the subjective analysis, VMI at 45 to 50 keV is proposed as the best trade-off between objective and subjective image quality.