亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessing heterogeneity in spatial data using the HTA index with applications to spatial transcriptomics and imaging

空间分析 空间异质性 肿瘤异质性 计算机科学 推论 计算生物学 源代码 数据挖掘 生物 人工智能 医学 统计 癌症 内科学 数学 操作系统 生态学
作者
Alona Levy-Jurgenson,Xavier Tekpli,Zohar Yakhini
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:37 (21): 3796-3804 被引量:2
标识
DOI:10.1093/bioinformatics/btab569
摘要

Tumour heterogeneity is being increasingly recognized as an important characteristic of cancer and as a determinant of prognosis and treatment outcome. Emerging spatial transcriptomics data hold the potential to further our understanding of tumour heterogeneity and its implications. However, existing statistical tools are not sufficiently powerful to capture heterogeneity in the complex setting of spatial molecular biology.We provide a statistical solution, the HeTerogeneity Average index (HTA), specifically designed to handle the multivariate nature of spatial transcriptomics. We prove that HTA has an approximately normal distribution, therefore lending itself to efficient statistical assessment and inference. We first demonstrate that HTA accurately reflects the level of heterogeneity in simulated data. We then use HTA to analyze heterogeneity in two cancer spatial transcriptomics datasets: spatial RNA sequencing by 10x Genomics and spatial transcriptomics inferred from H&E. Finally, we demonstrate that HTA also applies to 3D spatial data using brain MRI. In spatial RNA sequencing, we use a known combination of molecular traits to assert that HTA aligns with the expected outcome for this combination. We also show that HTA captures immune-cell infiltration at multiple resolutions. In digital pathology, we show how HTA can be used in survival analysis and demonstrate that high levels of heterogeneity may be linked to poor survival. In brain MRI, we show that HTA differentiates between normal ageing, Alzheimer's disease and two tumours. HTA also extends beyond molecular biology and medical imaging, and can be applied to many domains, including GIS.Python package and source code are available at: https://github.com/alonalj/hta.Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zosia发布了新的文献求助10
1秒前
3秒前
迷你的靖雁完成签到,获得积分10
4秒前
啊怙纲完成签到 ,获得积分10
6秒前
8秒前
10秒前
12秒前
ZHEN发布了新的文献求助10
13秒前
GingerF完成签到,获得积分0
15秒前
hjjjjj1发布了新的文献求助10
15秒前
善学以致用应助陶1122采纳,获得10
16秒前
尘尘发布了新的文献求助10
19秒前
大个应助hjjjjj1采纳,获得10
23秒前
尘尘完成签到,获得积分10
28秒前
hjjjjj1完成签到,获得积分10
30秒前
何为完成签到 ,获得积分0
33秒前
笨笨小蚂蚁完成签到 ,获得积分10
33秒前
wanci应助ZHEN采纳,获得10
37秒前
李健的小迷弟应助decade采纳,获得10
39秒前
ZHEN完成签到,获得积分10
45秒前
李金文应助科研通管家采纳,获得10
45秒前
45秒前
52秒前
陶1122发布了新的文献求助10
58秒前
思源应助可个可可采纳,获得10
58秒前
科目三应助陶1122采纳,获得10
1分钟前
1分钟前
1分钟前
可个可可发布了新的文献求助10
1分钟前
传奇3应助song采纳,获得10
1分钟前
鲤鲤完成签到,获得积分10
1分钟前
lixiaolu完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
紫亦君发布了新的文献求助10
1分钟前
可个可可完成签到,获得积分20
1分钟前
Runjin_Hu发布了新的文献求助10
1分钟前
1分钟前
1分钟前
紫亦君完成签到,获得积分20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610770
求助须知:如何正确求助?哪些是违规求助? 4016589
关于积分的说明 12435470
捐赠科研通 3698235
什么是DOI,文献DOI怎么找? 2039335
邀请新用户注册赠送积分活动 1072208
科研通“疑难数据库(出版商)”最低求助积分说明 955865