Assessing heterogeneity in spatial data using the HTA index with applications to spatial transcriptomics and imaging

空间分析 空间异质性 肿瘤异质性 计算机科学 推论 计算生物学 源代码 数据挖掘 生物 人工智能 医学 统计 癌症 内科学 数学 操作系统 生态学
作者
Alona Levy-Jurgenson,Xavier Tekpli,Zohar Yakhini
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:37 (21): 3796-3804 被引量:2
标识
DOI:10.1093/bioinformatics/btab569
摘要

Tumour heterogeneity is being increasingly recognized as an important characteristic of cancer and as a determinant of prognosis and treatment outcome. Emerging spatial transcriptomics data hold the potential to further our understanding of tumour heterogeneity and its implications. However, existing statistical tools are not sufficiently powerful to capture heterogeneity in the complex setting of spatial molecular biology.We provide a statistical solution, the HeTerogeneity Average index (HTA), specifically designed to handle the multivariate nature of spatial transcriptomics. We prove that HTA has an approximately normal distribution, therefore lending itself to efficient statistical assessment and inference. We first demonstrate that HTA accurately reflects the level of heterogeneity in simulated data. We then use HTA to analyze heterogeneity in two cancer spatial transcriptomics datasets: spatial RNA sequencing by 10x Genomics and spatial transcriptomics inferred from H&E. Finally, we demonstrate that HTA also applies to 3D spatial data using brain MRI. In spatial RNA sequencing, we use a known combination of molecular traits to assert that HTA aligns with the expected outcome for this combination. We also show that HTA captures immune-cell infiltration at multiple resolutions. In digital pathology, we show how HTA can be used in survival analysis and demonstrate that high levels of heterogeneity may be linked to poor survival. In brain MRI, we show that HTA differentiates between normal ageing, Alzheimer's disease and two tumours. HTA also extends beyond molecular biology and medical imaging, and can be applied to many domains, including GIS.Python package and source code are available at: https://github.com/alonalj/hta.Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
郑泽航完成签到,获得积分20
1秒前
无花果应助知行合一采纳,获得10
2秒前
2秒前
2秒前
勤奋梨愁完成签到,获得积分10
2秒前
greenandblue发布了新的文献求助10
3秒前
思源应助兰是一个信仰采纳,获得10
4秒前
5秒前
5秒前
5秒前
6秒前
霸气谷蕊完成签到,获得积分10
6秒前
小马甲应助小奶采纳,获得10
7秒前
7秒前
7秒前
bian发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
9秒前
9秒前
郑泽航发布了新的文献求助10
9秒前
ln发布了新的文献求助10
10秒前
嘿嘿发布了新的文献求助10
10秒前
rioo完成签到,获得积分10
10秒前
科研通AI5应助飘逸妙柏采纳,获得10
10秒前
流苏发布了新的文献求助10
11秒前
慕青应助skf采纳,获得10
11秒前
11秒前
11秒前
dd完成签到,获得积分10
12秒前
李健应助时尚的八宝粥采纳,获得10
12秒前
12秒前
13秒前
长公主发布了新的文献求助10
13秒前
听雨发布了新的文献求助10
13秒前
13秒前
鹿lu发布了新的文献求助10
14秒前
摆烂好爽发布了新的文献求助20
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974426
求助须知:如何正确求助?哪些是违规求助? 3518788
关于积分的说明 11195842
捐赠科研通 3254946
什么是DOI,文献DOI怎么找? 1797649
邀请新用户注册赠送积分活动 877037
科研通“疑难数据库(出版商)”最低求助积分说明 806130