Assessing heterogeneity in spatial data using the HTA index with applications to spatial transcriptomics and imaging

空间分析 空间异质性 肿瘤异质性 计算机科学 推论 计算生物学 源代码 数据挖掘 生物 人工智能 医学 统计 癌症 内科学 数学 操作系统 生态学
作者
Alona Levy-Jurgenson,Xavier Tekpli,Zohar Yakhini
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:37 (21): 3796-3804 被引量:2
标识
DOI:10.1093/bioinformatics/btab569
摘要

Tumour heterogeneity is being increasingly recognized as an important characteristic of cancer and as a determinant of prognosis and treatment outcome. Emerging spatial transcriptomics data hold the potential to further our understanding of tumour heterogeneity and its implications. However, existing statistical tools are not sufficiently powerful to capture heterogeneity in the complex setting of spatial molecular biology.We provide a statistical solution, the HeTerogeneity Average index (HTA), specifically designed to handle the multivariate nature of spatial transcriptomics. We prove that HTA has an approximately normal distribution, therefore lending itself to efficient statistical assessment and inference. We first demonstrate that HTA accurately reflects the level of heterogeneity in simulated data. We then use HTA to analyze heterogeneity in two cancer spatial transcriptomics datasets: spatial RNA sequencing by 10x Genomics and spatial transcriptomics inferred from H&E. Finally, we demonstrate that HTA also applies to 3D spatial data using brain MRI. In spatial RNA sequencing, we use a known combination of molecular traits to assert that HTA aligns with the expected outcome for this combination. We also show that HTA captures immune-cell infiltration at multiple resolutions. In digital pathology, we show how HTA can be used in survival analysis and demonstrate that high levels of heterogeneity may be linked to poor survival. In brain MRI, we show that HTA differentiates between normal ageing, Alzheimer's disease and two tumours. HTA also extends beyond molecular biology and medical imaging, and can be applied to many domains, including GIS.Python package and source code are available at: https://github.com/alonalj/hta.Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
景自端发布了新的文献求助10
1秒前
氢气发布了新的文献求助10
1秒前
1秒前
今后应助小黑爱搞科研采纳,获得10
2秒前
3秒前
4秒前
4秒前
5秒前
似云般随意完成签到,获得积分10
5秒前
6秒前
6秒前
Cker发布了新的文献求助10
8秒前
CWNU_HAN应助leslie采纳,获得30
8秒前
烈酒一醉方休完成签到 ,获得积分10
8秒前
9秒前
9秒前
Evelyn100899完成签到,获得积分10
9秒前
小鱼干完成签到,获得积分20
9秒前
研友_85Yex8发布了新的文献求助10
9秒前
zzzzz发布了新的文献求助10
9秒前
忙里偷闲完成签到,获得积分10
9秒前
科研小白完成签到,获得积分10
9秒前
科研通AI2S应助一碗小米饭采纳,获得10
10秒前
Tll完成签到,获得积分10
11秒前
任性雨安发布了新的文献求助10
11秒前
12秒前
krkr发布了新的文献求助10
12秒前
李健应助陈文学采纳,获得10
13秒前
13秒前
13秒前
小鱼干发布了新的文献求助10
14秒前
simon发布了新的文献求助10
14秒前
xiaowang发布了新的文献求助10
16秒前
qqq发布了新的文献求助10
16秒前
毒盐发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145665
求助须知:如何正确求助?哪些是违规求助? 2797153
关于积分的说明 7823057
捐赠科研通 2453466
什么是DOI,文献DOI怎么找? 1305677
科研通“疑难数据库(出版商)”最低求助积分说明 627532
版权声明 601469