Performance and Durability of Pure-Water-Fed Anion Exchange Membrane Electrolyzers Using Baseline Materials and Operation

耐久性 材料科学 电解 聚合物电解质膜电解 电解水 电力转天然气 质子交换膜燃料电池 膜电极组件 电化学 工艺工程 化学工程 催化作用 高压电解 分解水 复合材料 电解质 电极 燃料电池 有机化学 工程类 化学 物理化学 光催化
作者
Grace Lindquist,Sebastian Z. Oener,Raina A Krivina,Andrew R Motz,Alex Keane,Christopher Capuano,Katherine E Ayers,Shannon W. Boettcher
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (44): 51917-51924 被引量:66
标识
DOI:10.1021/acsami.1c06053
摘要

Water electrolysis powered by renewable electricity produces green hydrogen and oxygen gas, which can be used for energy, fertilizer, and industrial applications and thus displace fossil fuels. Pure-water anion-exchange-membrane (AEM) electrolyzers in principle offer the advantages of commercialized proton-exchange-membrane systems (high current density, low cross over, output gas compression, etc.) while enabling the use of less-expensive steel components and nonprecious metal catalysts. AEM electrolyzer research and development, however, has been limited by the lack of broadly accessible materials that provide consistent cell performance, making it difficult to compare results across studies. Further, even when the same materials are used, different pretreatments and electrochemical analysis techniques can produce different results. Here, we report an AEM electrolyzer comprising commercially available catalysts, membrane, ionomer, and gas-diffusion layers operating near 1.9 V at 1 A cm-2 in pure water. After the initial break in, the performance degraded by 0.67 mV h-1 at 0.5 A cm-2 at 55 °C. We detail the key preparation, assembly, and operation techniques employed and show further performance improvements using advanced materials as a proof-of-concept for future AEM-electrolyzer development. The data thus provide an easily reproducible and comparatively high-performance baseline that can be used by other laboratories to calibrate the performance of improved cell components, nonprecious metal oxygen evolution, and hydrogen evolution catalysts and learn how to mitigate degradation pathways.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分20
2秒前
花花懿懿完成签到,获得积分10
2秒前
宁燕完成签到,获得积分10
2秒前
阿靖完成签到,获得积分10
4秒前
花花懿懿发布了新的文献求助10
5秒前
pp完成签到 ,获得积分10
6秒前
6秒前
飘逸的山柏完成签到 ,获得积分10
6秒前
倪兰云完成签到,获得积分20
10秒前
cappuccino完成签到 ,获得积分10
10秒前
wanci应助xiaoyi采纳,获得10
11秒前
呆萌滑板完成签到 ,获得积分10
11秒前
ZXH发布了新的文献求助10
12秒前
Merci完成签到,获得积分10
14秒前
邓代容完成签到 ,获得积分0
17秒前
18秒前
胡可完成签到 ,获得积分10
18秒前
月月鸟完成签到 ,获得积分10
19秒前
子衿完成签到 ,获得积分10
21秒前
22秒前
22秒前
lgl完成签到,获得积分10
23秒前
光晦完成签到 ,获得积分10
24秒前
小鱼儿发布了新的文献求助10
24秒前
精明的盼雁完成签到,获得积分10
25秒前
尘南浔发布了新的文献求助10
25秒前
carbonhan完成签到,获得积分10
25秒前
LmyHusband完成签到,获得积分10
25秒前
听闻韬声依旧完成签到 ,获得积分10
26秒前
Faded完成签到 ,获得积分10
29秒前
dddd完成签到 ,获得积分10
30秒前
30秒前
羞涩的西牛完成签到 ,获得积分10
30秒前
yet完成签到,获得积分10
30秒前
31秒前
Vincent完成签到,获得积分10
33秒前
33秒前
李十七完成签到 ,获得积分10
33秒前
尘南浔完成签到,获得积分10
33秒前
娃哈哈完成签到,获得积分10
33秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5223798
求助须知:如何正确求助?哪些是违规求助? 4396038
关于积分的说明 13682589
捐赠科研通 4260141
什么是DOI,文献DOI怎么找? 2337783
邀请新用户注册赠送积分活动 1335157
关于科研通互助平台的介绍 1290838