Mitigating Adversarial Attacks Based on Denoising & Reconstruction with Finance Authentication System Case Study

对抗制 计算机科学 活泼 稳健性(进化) 人工智能 认证(法律) 生物识别 降噪 机器学习 计算机安全 理论计算机科学 生物化学 基因 化学
作者
Juzhen Wang,Yiqi Hu,Yiren Qi,Ziwen Peng,Changjia Zhou
出处
期刊:IEEE Transactions on Computers [Institute of Electrical and Electronics Engineers]
卷期号:73 (2): 314-326
标识
DOI:10.1109/tc.2021.3066614
摘要

Deep learning techniques were widely adopted in various scenarios as a service. However, they are found naturally exposed to adversarial attacks. Such imperceptible-perturbation-based attacks can cause severe damage in nowaday authentication systems that adopt DNNs as the core, such as fingerprint liveness detection systems, face recognition systems, etc. This paper avoids improving the model's robustness and realizes the defense against adversarial attacks based on denoising and reconstruction. Our proposed method can be viewed as a two-step defense framework. The first step denoises the input adversarial example, then reconstructing the sample to close to the original clean image and help the target model output the original label. The proposed method is evaluated using six kinds of state-of-art adversarial attacks, including the adaptive attacks, which are known as the strongest attacks.We also specifically focus on demonstrating the effectiveness of our proposed work in Finance Authentication systems as a real-life case study. Experimental results reveal that our method is more robust than the previous super-resolution-only defense in respect of attaining a higher averaging accuracy over clean and distorted samples. To the best of our knowledge, it's the first work that reveals a comprehensive defense framework against adversarial attacks over Finance Authentication systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
晗晗完成签到,获得积分10
1秒前
1秒前
2秒前
无聊的万天完成签到,获得积分10
3秒前
3秒前
昵称呢发布了新的文献求助10
3秒前
4秒前
5秒前
张北海应助嘚嘚采纳,获得20
5秒前
6秒前
充电宝应助留白留白采纳,获得30
6秒前
6秒前
Shalan发布了新的文献求助10
6秒前
晗晗发布了新的文献求助10
7秒前
无风海发布了新的文献求助10
8秒前
等待的啤酒完成签到,获得积分10
9秒前
隐形曼青应助leeeeee采纳,获得10
10秒前
自由梦松完成签到,获得积分10
10秒前
坦率的匪应助称心寒松采纳,获得10
10秒前
FashionBoy应助超级盼烟采纳,获得10
10秒前
12秒前
Eliauk发布了新的文献求助10
12秒前
贺兰发布了新的文献求助10
12秒前
嘚嘚应助文件撤销了驳回
12秒前
13秒前
繁荣的行天完成签到,获得积分10
14秒前
打打应助余南采纳,获得10
14秒前
14秒前
JamesPei应助明理的姿采纳,获得10
16秒前
王大炮发布了新的文献求助10
16秒前
16秒前
小子完成签到,获得积分20
17秒前
miki完成签到,获得积分10
17秒前
青青子衿发布了新的文献求助10
17秒前
17秒前
Shalan完成签到,获得积分10
19秒前
昵称呢完成签到,获得积分10
19秒前
贺兰完成签到,获得积分10
20秒前
20秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992868
求助须知:如何正确求助?哪些是违规求助? 3533665
关于积分的说明 11263418
捐赠科研通 3273432
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629