亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mitigating Adversarial Attacks Based on Denoising & Reconstruction with Finance Authentication System Case Study

对抗制 计算机科学 活泼 稳健性(进化) 人工智能 认证(法律) 生物识别 降噪 机器学习 计算机安全 理论计算机科学 生物化学 基因 化学
作者
Juzhen Wang,Yiqi Hu,Yiren Qi,Ziwen Peng,Changjia Zhou
出处
期刊:IEEE Transactions on Computers [Institute of Electrical and Electronics Engineers]
卷期号:73 (2): 314-326
标识
DOI:10.1109/tc.2021.3066614
摘要

Deep learning techniques were widely adopted in various scenarios as a service. However, they are found naturally exposed to adversarial attacks. Such imperceptible-perturbation-based attacks can cause severe damage in nowaday authentication systems that adopt DNNs as the core, such as fingerprint liveness detection systems, face recognition systems, etc. This paper avoids improving the model's robustness and realizes the defense against adversarial attacks based on denoising and reconstruction. Our proposed method can be viewed as a two-step defense framework. The first step denoises the input adversarial example, then reconstructing the sample to close to the original clean image and help the target model output the original label. The proposed method is evaluated using six kinds of state-of-art adversarial attacks, including the adaptive attacks, which are known as the strongest attacks.We also specifically focus on demonstrating the effectiveness of our proposed work in Finance Authentication systems as a real-life case study. Experimental results reveal that our method is more robust than the previous super-resolution-only defense in respect of attaining a higher averaging accuracy over clean and distorted samples. To the best of our knowledge, it's the first work that reveals a comprehensive defense framework against adversarial attacks over Finance Authentication systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Artin发布了新的文献求助30
8秒前
量子星尘发布了新的文献求助10
10秒前
14秒前
量子星尘发布了新的文献求助30
15秒前
29秒前
共享精神应助科研通管家采纳,获得10
49秒前
Criminology34应助科研通管家采纳,获得10
49秒前
49秒前
51秒前
55秒前
Sean完成签到,获得积分10
1分钟前
Sean发布了新的文献求助10
1分钟前
我是老大应助Sean采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
重庆森林完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
小伙子应助budingman采纳,获得50
2分钟前
yg发布了新的文献求助10
3分钟前
3分钟前
知许完成签到 ,获得积分10
3分钟前
NexusExplorer应助yg采纳,获得10
3分钟前
汉堡包应助yg采纳,获得10
3分钟前
科研完成签到,获得积分10
3分钟前
3分钟前
3分钟前
wyx完成签到,获得积分10
3分钟前
若尘完成签到,获得积分10
3分钟前
若尘发布了新的文献求助10
3分钟前
TruongThe完成签到,获得积分20
4分钟前
小蘑菇应助明亮的涵山采纳,获得10
4分钟前
小豆芽完成签到,获得积分10
4分钟前
明亮的涵山完成签到,获得积分20
4分钟前
4分钟前
5分钟前
5分钟前
简单慕凝完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723904
求助须知:如何正确求助?哪些是违规求助? 5282409
关于积分的说明 15299338
捐赠科研通 4872163
什么是DOI,文献DOI怎么找? 2616598
邀请新用户注册赠送积分活动 1566476
关于科研通互助平台的介绍 1523314