Mitigating Adversarial Attacks Based on Denoising & Reconstruction with Finance Authentication System Case Study

对抗制 计算机科学 活泼 稳健性(进化) 人工智能 认证(法律) 生物识别 降噪 机器学习 计算机安全 理论计算机科学 生物化学 基因 化学
作者
Juzhen Wang,Yiqi Hu,Yiren Qi,Ziwen Peng,Changjia Zhou
出处
期刊:IEEE Transactions on Computers [Institute of Electrical and Electronics Engineers]
卷期号:73 (2): 314-326
标识
DOI:10.1109/tc.2021.3066614
摘要

Deep learning techniques were widely adopted in various scenarios as a service. However, they are found naturally exposed to adversarial attacks. Such imperceptible-perturbation-based attacks can cause severe damage in nowaday authentication systems that adopt DNNs as the core, such as fingerprint liveness detection systems, face recognition systems, etc. This paper avoids improving the model's robustness and realizes the defense against adversarial attacks based on denoising and reconstruction. Our proposed method can be viewed as a two-step defense framework. The first step denoises the input adversarial example, then reconstructing the sample to close to the original clean image and help the target model output the original label. The proposed method is evaluated using six kinds of state-of-art adversarial attacks, including the adaptive attacks, which are known as the strongest attacks.We also specifically focus on demonstrating the effectiveness of our proposed work in Finance Authentication systems as a real-life case study. Experimental results reveal that our method is more robust than the previous super-resolution-only defense in respect of attaining a higher averaging accuracy over clean and distorted samples. To the best of our knowledge, it's the first work that reveals a comprehensive defense framework against adversarial attacks over Finance Authentication systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云不暇完成签到 ,获得积分10
6秒前
小唐完成签到,获得积分10
7秒前
zhengyuci完成签到 ,获得积分10
10秒前
北辰完成签到 ,获得积分10
15秒前
明天过后完成签到,获得积分10
34秒前
俊俊完成签到 ,获得积分0
39秒前
39秒前
Yangyang完成签到,获得积分10
42秒前
44秒前
可爱可兰完成签到 ,获得积分10
47秒前
Jasper应助一个小胖子采纳,获得10
51秒前
纪智勇完成签到,获得积分10
53秒前
Bethune124完成签到 ,获得积分10
54秒前
Gino完成签到,获得积分0
56秒前
勤劳小懒虫完成签到 ,获得积分10
1分钟前
凌晨五点的完成签到,获得积分10
1分钟前
thchiang完成签到 ,获得积分10
1分钟前
xcwy完成签到,获得积分10
1分钟前
烫嘴普通话完成签到,获得积分0
1分钟前
miao123完成签到 ,获得积分10
1分钟前
hesven完成签到 ,获得积分10
1分钟前
1分钟前
英俊绿海完成签到 ,获得积分10
1分钟前
高大厉完成签到 ,获得积分10
1分钟前
龙傲天完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
lelele发布了新的文献求助10
1分钟前
Raymond发布了新的文献求助10
1分钟前
yyyyyy完成签到 ,获得积分10
1分钟前
陌子完成签到 ,获得积分10
1分钟前
lelele完成签到,获得积分10
1分钟前
沉默寻凝完成签到,获得积分10
1分钟前
冷静傲丝完成签到 ,获得积分10
1分钟前
wanci应助Raymond采纳,获得10
1分钟前
苏苏爱学习完成签到,获得积分10
1分钟前
阡陌完成签到,获得积分10
1分钟前
Polymer72应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339107
求助须知:如何正确求助?哪些是违规求助? 2967059
关于积分的说明 8628085
捐赠科研通 2646543
什么是DOI,文献DOI怎么找? 1449277
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660176