已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Ensemble Framework for Improving the Prediction of Deleterious Synonymous Mutation

计算机科学 标杆管理 分类器(UML) 机器学习 人工智能 预测建模 集成学习 集合预报 支持向量机 数据挖掘 业务 营销
作者
Ning Cheng,Huadong Wang,Xi Tang,Tao� Zhang,Jie Gui,Chun-Hou Zheng,Junfeng Xia
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (5): 2603-2611 被引量:6
标识
DOI:10.1109/tcsvt.2021.3063145
摘要

In recent years, the association between synonymous mutations (SMs) and human diseases has been uncovered in many studies. It is a challenge for identifying deleterious SMs in the field of medical genomics. Although there are several computational methods proposed in the past years, the precise prediction of deleterious SMs is still challenging. In this work, we proposed a predictor named as EnDSM, which is an accurate method based on the ensemble framework. We explored multimodal features across four groups including functional score, conservation, splicing, and sequence features, and we then trained eight conceptually different machine learning classifiers for each of them, resulting in 32 base classification models. We further selected four base models referring to their prediction performance and the predictive probabilities of these base classification models were subsequently used as the input feature vectors of logistic regression classifier to construct the ensemble learning model. The results suggested that EnDSM achieved better performance comparing with other state-of-the-art predictors on the training and independent test datasets. We anticipate that our ensemble predictor EnDSM will become a valuable tool for deleterious SM prediction. The EnDSM server interface along with the benchmarking data sets are freely available at http://bioinfo.ahu.edu.cn/EnDSM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
勤奋的张完成签到,获得积分10
刚刚
1秒前
SonRisa发布了新的文献求助10
1秒前
jhb完成签到 ,获得积分10
3秒前
IBMffff发布了新的文献求助10
4秒前
李秋静发布了新的文献求助10
4秒前
冷酷向薇完成签到,获得积分10
6秒前
支翰完成签到 ,获得积分10
9秒前
10秒前
SciGPT应助dingding采纳,获得10
14秒前
15秒前
15秒前
air发布了新的文献求助10
16秒前
烟花应助悲凉的艳采纳,获得10
17秒前
19秒前
20秒前
20秒前
yuyu发布了新的文献求助20
20秒前
风趣的不弱完成签到,获得积分10
22秒前
积极慕梅应助一定要早睡采纳,获得10
24秒前
香蕉觅云应助Jenny采纳,获得10
24秒前
D-L@rabbit完成签到,获得积分10
25秒前
26秒前
tingsHHH发布了新的文献求助10
27秒前
航行天下发布了新的文献求助30
27秒前
悲凉的艳发布了新的文献求助10
29秒前
31秒前
Lei发布了新的文献求助10
38秒前
Hello应助科研通管家采纳,获得10
44秒前
田様应助科研通管家采纳,获得10
44秒前
45秒前
彭于晏应助科研通管家采纳,获得10
45秒前
45秒前
45秒前
在水一方应助tingsHHH采纳,获得10
46秒前
yrm完成签到,获得积分10
47秒前
47秒前
sunshine完成签到 ,获得积分10
48秒前
48秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146435
求助须知:如何正确求助?哪些是违规求助? 2797816
关于积分的说明 7825895
捐赠科研通 2454175
什么是DOI,文献DOI怎么找? 1306214
科研通“疑难数据库(出版商)”最低求助积分说明 627666
版权声明 601503