An Ensemble Framework for Improving the Prediction of Deleterious Synonymous Mutation

计算机科学 标杆管理 分类器(UML) 机器学习 人工智能 预测建模 集成学习 集合预报 支持向量机 数据挖掘 业务 营销
作者
Ning Cheng,Huadong Wang,Xi Tang,Tao� Zhang,Jie Gui,Chun-Hou Zheng,Junfeng Xia
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (5): 2603-2611 被引量:6
标识
DOI:10.1109/tcsvt.2021.3063145
摘要

In recent years, the association between synonymous mutations (SMs) and human diseases has been uncovered in many studies. It is a challenge for identifying deleterious SMs in the field of medical genomics. Although there are several computational methods proposed in the past years, the precise prediction of deleterious SMs is still challenging. In this work, we proposed a predictor named as EnDSM, which is an accurate method based on the ensemble framework. We explored multimodal features across four groups including functional score, conservation, splicing, and sequence features, and we then trained eight conceptually different machine learning classifiers for each of them, resulting in 32 base classification models. We further selected four base models referring to their prediction performance and the predictive probabilities of these base classification models were subsequently used as the input feature vectors of logistic regression classifier to construct the ensemble learning model. The results suggested that EnDSM achieved better performance comparing with other state-of-the-art predictors on the training and independent test datasets. We anticipate that our ensemble predictor EnDSM will become a valuable tool for deleterious SM prediction. The EnDSM server interface along with the benchmarking data sets are freely available at http://bioinfo.ahu.edu.cn/EnDSM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
852应助Snoopy采纳,获得10
1秒前
yf2011108002完成签到,获得积分20
1秒前
2秒前
yu发布了新的文献求助10
3秒前
3秒前
HHH发布了新的文献求助10
3秒前
3秒前
3秒前
呆熊完成签到,获得积分10
4秒前
笑点低的铁身完成签到 ,获得积分10
4秒前
5秒前
111完成签到,获得积分10
5秒前
5秒前
薛十七应助温婉的篮球采纳,获得10
6秒前
liang应助狂野傲珊采纳,获得10
6秒前
颜靖仇发布了新的文献求助10
6秒前
Hu发布了新的文献求助10
6秒前
7秒前
7秒前
爆米花应助加油加油采纳,获得10
7秒前
归尘应助岩伴采纳,获得10
7秒前
无花果应助Rosemary采纳,获得10
8秒前
天天快乐应助口羊采纳,获得10
8秒前
huskies发布了新的文献求助10
8秒前
LLCHEN完成签到 ,获得积分10
9秒前
脑洞疼应助lxjjj采纳,获得10
9秒前
皮咻完成签到,获得积分10
10秒前
mooonyue发布了新的文献求助10
10秒前
君君完成签到,获得积分10
11秒前
Aura发布了新的文献求助10
12秒前
13秒前
情怀应助呆熊采纳,获得10
13秒前
14秒前
KKLJOJ发布了新的文献求助10
14秒前
14秒前
14秒前
111发布了新的文献求助10
15秒前
小路发布了新的文献求助10
15秒前
有怀完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072971
求助须知:如何正确求助?哪些是违规求助? 4293165
关于积分的说明 13377479
捐赠科研通 4114472
什么是DOI,文献DOI怎么找? 2252995
邀请新用户注册赠送积分活动 1257787
关于科研通互助平台的介绍 1190665