亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Decitabine Induces Ferroptosis in Myelodysplastic Syndrome

癸他滨 细胞凋亡 活力测定 癌症研究 医学 药理学 程序性细胞死亡 阿扎胞苷 细胞毒性 流式细胞术 化学 骨髓增生异常综合症 生物化学 免疫学 体外 骨髓 DNA甲基化 基因表达 基因
作者
Qi Lv,Huaquan Wang,Zonghong Shao,Limin Xing,Lanzhu Yue,Jiaxi Liu
出处
期刊:Blood [American Society of Hematology]
卷期号:134 (Supplement_1): 2995-2995 被引量:2
标识
DOI:10.1182/blood-2019-122000
摘要

Decitabine is one of the classical demethylation drugs in the treatment of myelodysplastic syndrome (MDS); however, the exact mechanism of decitabine has not been fully understood. Such knowledge is essential to develop mechanism-based, targeted approaches in the treatment of MDS. Here, we show that decitabine-induced ROS raise leads to ferroptosis in myelodysplastic syndrome cells. To investigate whether decitabine could induce ferroptosis in MDS cells and its mechanism, cell lines SKM-1 and MUTZ-1 were co-cultured with decitabine and ferroptosis inhibitor (ferrostatin-1), respectively. CCK-8 assay was used to detect the effects of drugs on cell viability. At the same time, we observed whether necroptosis inhibitor (necrostatin-1), apoptosis inhibitor (z-vad-fmk) and iron chelating agent (DFO) could reverse the inhibitory effect of decitabine on MDS cells. The results showed that, necrostatin-1 could increase the cell viability significantly. The growth-inhibitory effect of decitabine on SKM-1 and MUTZ-1 could be partially reversed by ferrostatin-1, DFO and necrostatin-1. The effect of ferrostatin-1 is the most significant. Ferroptosis inducer (erastin) could increase the cytotoxicity of decitabine at different concentrations. Flow cytometry was used to detect the ROS level. Biochemical method was used to detect the intracellular glutathione (GSH) level and glutathione peroxidase (GPXs) activity. The results showed that, the level of GSH and the activity of GPXs decreased while the ROS level increased in SKM-1 and MUTZ-1 cell lines when treated with decitabine, which could all be inhibited by ferrostatin-1. The iron overload model of C57BL/6 mice was next constructed to observe whether iron overload could induce ferroptosis. The results showed that, the concentration of hemoglobin in peripheral blood of mice was negatively correlated with intracellular Fe2+level and ferritin concentration. Iron overload led to decreased viability of bone marrow mononuclear cells (BMMNCs), which was negatively correlated with intracellular Fe2+level. Ferrostatin-1 and necrostatin-1 partially reversed the decline of cell viability in iron overload groups, and erastin promoted the proliferation of BMMNCs in iron overload mice. The level of GSH and the activity of GPXs decreased while the ROS level increased in BMMNCs of iron overload mice compared with the control. DFO could increase the level of GSH in iron overload mice. Ferrostatin-1, z-vad-fmk and DFO could increase the GPXs activity of BMMNCs in iron overload mice. Finally, to explore the role of ferroptosis in the pathogenesis of low-risk and high-risk MDS patients respectively, the BMMNCs were obtained from low-risk MDS, high-risk MDS and lymphoma patients respectively and co-cultured with decitabine and above-mentioned inhibitors. The results showed that, ferrostatin-1, necrostatin-1, z-vad-fmk could significantly reverse the inhibitory effect of decitabine of low-risk MDS patients. Necrostatin-1 and Fer-1 could also reverse the inhibitory effect of decitabine of high-risk MDS patients, although the difference was not significant. Decitabine could significantly increase the ROS level in both MDS groups, which could both be inhibited by ferrostatin-1 or promoted by erastin. Ferrostatin-1, necrostatin-1 and z-vad-fmk could significantly reverse the inhibitory effect of decitabine on GSH level in low-risk MDS patients. Ferrostatin-1 and necrostatin-1 could significantly reverse the inhibitory effect of decitabine on GSH level in high-risk MDS patients. Erastin combined with decitabine could further reduce the GSH level, and the difference was significant in high-risk MDS group. For low-risk MDS group, GPXs activity of ferrostatin-1 combined with decitabine and z-vad-fmk combined with decitabine groups were significantly higher than that of decitabine group. For high-risk MDS group, the activity of GPXs of ferrostatin-1 combined with decitabine and necrostatin-1 combined with decitabine groups were significantly higher than that of decitabine group. Erastin could further decrease the activity of GPXs when compared with decitabine group. Our findings reveal a novel therapeutic mechanism of decitabine and may open a new window for therapeutic targeting in the treatment of MDS. Figure Disclosures No relevant conflicts of interest to declare.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
AaronW完成签到 ,获得积分10
14秒前
dbyy发布了新的文献求助10
16秒前
大熊完成签到 ,获得积分10
19秒前
21秒前
FashionBoy应助曦耀采纳,获得10
23秒前
超帅的龙猫完成签到,获得积分10
36秒前
qq完成签到,获得积分10
51秒前
李健应助曦耀采纳,获得10
1分钟前
qq发布了新的文献求助10
1分钟前
务实的犀牛完成签到,获得积分10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
磨刀霍霍阿里嘎多完成签到 ,获得积分10
1分钟前
要减肥的春天完成签到,获得积分10
1分钟前
共享精神应助冷酷的鹏涛采纳,获得10
1分钟前
uss完成签到,获得积分10
1分钟前
阿布应助仁爱的念文采纳,获得10
2分钟前
从来都不会放弃zr完成签到,获得积分10
2分钟前
直率的雪巧完成签到,获得积分10
2分钟前
科研通AI6应助inRe采纳,获得10
2分钟前
研友_VZG7GZ应助xuzb采纳,获得10
2分钟前
2分钟前
3分钟前
斯文败类应助SiboN采纳,获得10
3分钟前
CodeCraft应助科研通管家采纳,获得10
3分钟前
思源应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
冷酷的鹏涛完成签到,获得积分10
3分钟前
3分钟前
墨薄凉完成签到 ,获得积分10
3分钟前
轻松一曲应助inRe采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628172
求助须知:如何正确求助?哪些是违规求助? 4715898
关于积分的说明 14963806
捐赠科研通 4785879
什么是DOI,文献DOI怎么找? 2555413
邀请新用户注册赠送积分活动 1516720
关于科研通互助平台的介绍 1477252