🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情

Guide Subspace Learning for Unsupervised Domain Adaptation

子空间拓扑 判别式 计算机科学 人工智能 域适应 线性子空间 模式识别(心理学) 领域(数学分析) 算法 机器学习 数学 分类器(UML) 几何学 数学分析
作者
Lei Zhang,Jingru Fu,Shanshan Wang,David Zhang,Zhaoyang Dong,C. L. Philip Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (9): 3374-3388 被引量:109
标识
DOI:10.1109/tnnls.2019.2944455
摘要

A prevailing problem in many machine learning tasks is that the training (i.e., source domain) and test data (i.e., target domain) have different distribution [i.e., non-independent identical distribution (i.i.d.)]. Unsupervised domain adaptation (UDA) was proposed to learn the unlabeled target data by leveraging the labeled source data. In this article, we propose a guide subspace learning (GSL) method for UDA, in which an invariant, discriminative, and domain-agnostic subspace is learned by three guidance terms through a two-stage progressive training strategy. First, the subspace-guided term reduces the discrepancy between the domains by moving the source closer to the target subspace. Second, the data-guided term uses the coupled projections to map both domains to a unified subspace, where each target sample can be represented by the source samples with a low-rank coefficient matrix that can preserve the global structure of data. In this way, the data from both domains can be well interlaced and the domain-invariant features can be obtained. Third, for improving the discrimination of the subspaces, the label-guided term is constructed for prediction based on source labels and pseudo-target labels. To further improve the model tolerance to label noise, a label relaxation matrix is introduced. For the solver, a two-stage learning strategy with teacher teaches and student feedbacks mode is proposed to obtain the discriminative domain-agnostic subspace. In addition, for handling nonlinear domain shift, a nonlinear GSL (NGSL) framework is formulated with kernel embedding, such that the unified subspace is imposed with nonlinearity. Experiments on various cross-domain visual benchmark databases show that our methods outperform many state-of-the-art UDA methods. The source code is available at https://github.com/Fjr9516/GSL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清爽的山灵完成签到,获得积分10
1秒前
2秒前
思源应助无端采纳,获得10
2秒前
忧语梦完成签到,获得积分10
4秒前
5秒前
GreenDuane完成签到 ,获得积分0
5秒前
5秒前
Ringo完成签到 ,获得积分10
5秒前
露露发布了新的文献求助10
5秒前
8秒前
8秒前
上官若男应助CL采纳,获得10
11秒前
CipherSage应助九三采纳,获得10
11秒前
13秒前
13秒前
飞羽发布了新的文献求助10
14秒前
15秒前
persist发布了新的文献求助10
15秒前
斯文败类应助诸葛藏藏采纳,获得30
16秒前
小君发布了新的文献求助30
18秒前
18秒前
Jason完成签到 ,获得积分20
19秒前
科目三应助小太阳采纳,获得10
20秒前
雯雯发布了新的文献求助10
20秒前
破灭圆舞曲完成签到,获得积分10
21秒前
21秒前
成7发布了新的文献求助10
21秒前
fancy发布了新的文献求助10
22秒前
ZX完成签到,获得积分10
23秒前
23秒前
KKKWE发布了新的文献求助10
23秒前
25秒前
26秒前
CL发布了新的文献求助10
27秒前
lzz完成签到,获得积分20
27秒前
28秒前
28秒前
丘比特应助蔡蔡不菜菜采纳,获得10
28秒前
科研通AI5应助sdfgsdgs采纳,获得10
29秒前
科研通AI5应助DIY101采纳,获得10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1150
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 800
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
EEG in clinical practice 2nd edition 1994 600
Barth, Derrida and the Language of Theology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3603042
求助须知:如何正确求助?哪些是违规求助? 3171267
关于积分的说明 9569813
捐赠科研通 2877434
什么是DOI,文献DOI怎么找? 1580143
邀请新用户注册赠送积分活动 743019
科研通“疑难数据库(出版商)”最低求助积分说明 725687