Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks

人工神经网络 计算机科学 脉动流 校准 人工智能 机器学习 管道(软件) 流量(数学) 物理 机械 量子力学 医学 心脏病学 程序设计语言
作者
Georgios Kissas,Yibo Yang,Eileen Hwuang,Walter R. Witschey,John A. Detre,Paris Perdikaris
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:358: 112623-112623 被引量:440
标识
DOI:10.1016/j.cma.2019.112623
摘要

Advances in computational science offer a principled pipeline for predictive modeling of cardiovascular flows and aspire to provide a valuable tool for monitoring, diagnostics and surgical planning. Such models can be nowadays deployed on large patient-specific topologies of systemic arterial networks and return detailed predictions on flow patterns, wall shear stresses, and pulse wave propagation. However, their success heavily relies on tedious pre-processing and calibration procedures that typically induce a significant computational cost, thus hampering their clinical applicability. In this work we put forth a machine learning framework that enables the seamless synthesis of non-invasive in-vivo measurement techniques and computational flow dynamics models derived from first physical principles. We illustrate this new paradigm by showing how one-dimensional models of pulsatile flow can be used to constrain the output of deep neural networks such that their predictions satisfy the conservation of mass and momentum principles. Once trained on noisy and scattered clinical data of flow and wall displacement, these networks can return physically consistent predictions for velocity, pressure and wall displacement pulse wave propagation, all without the need to employ conventional simulators. A simple post-processing of these outputs can also provide a relatively cheap and effective way for estimating Windkessel model parameters that are required for the calibration of traditional computational models. The effectiveness of the proposed techniques is demonstrated through a series of prototype benchmarks, as well as a realistic clinical case involving in-vivo measurements near the aorta/carotid bifurcation of a healthy human subject.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
slugger完成签到,获得积分10
刚刚
CodeCraft应助日月星陈采纳,获得10
1秒前
Albert完成签到,获得积分10
1秒前
3秒前
科研通AI2S应助漂亮蜗牛采纳,获得10
3秒前
3秒前
心理学狗都不学完成签到,获得积分10
4秒前
万勇完成签到,获得积分10
4秒前
4秒前
5秒前
baby709466应助Rishel_Li采纳,获得10
7秒前
万勇发布了新的文献求助10
8秒前
8秒前
无辜巨人发布了新的文献求助10
8秒前
小蘑菇应助什么都不懂采纳,获得10
8秒前
小凤完成签到 ,获得积分10
8秒前
zzzzz完成签到,获得积分10
9秒前
秋语芙完成签到,获得积分10
9秒前
大方听云发布了新的文献求助10
9秒前
梁hs完成签到,获得积分10
10秒前
连冷安发布了新的文献求助10
10秒前
10秒前
朱诗源完成签到 ,获得积分10
10秒前
明理萃完成签到 ,获得积分10
11秒前
12秒前
12秒前
13秒前
孤独的慕山完成签到,获得积分10
13秒前
14秒前
情怀应助万勇采纳,获得10
14秒前
李健应助boyeer采纳,获得10
15秒前
15秒前
ahuang完成签到,获得积分10
15秒前
干净的夜蓉完成签到,获得积分10
15秒前
www完成签到,获得积分10
15秒前
繁荣的忆文完成签到,获得积分10
16秒前
heyvan完成签到 ,获得积分10
16秒前
香蕉秋寒发布了新的文献求助20
16秒前
无辜巨人完成签到,获得积分10
16秒前
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311845
求助须知:如何正确求助?哪些是违规求助? 2944668
关于积分的说明 8520492
捐赠科研通 2620270
什么是DOI,文献DOI怎么找? 1432725
科研通“疑难数据库(出版商)”最低求助积分说明 664756
邀请新用户注册赠送积分活动 650053