已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks

人工神经网络 计算机科学 脉动流 校准 人工智能 机器学习 管道(软件) 流量(数学) 物理 机械 医学 量子力学 心脏病学 程序设计语言
作者
Georgios Kissas,Yibo Yang,Eileen Hwuang,Walter R. Witschey,John A. Detre,Paris Perdikaris
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:358: 112623-112623 被引量:520
标识
DOI:10.1016/j.cma.2019.112623
摘要

Advances in computational science offer a principled pipeline for predictive modeling of cardiovascular flows and aspire to provide a valuable tool for monitoring, diagnostics and surgical planning. Such models can be nowadays deployed on large patient-specific topologies of systemic arterial networks and return detailed predictions on flow patterns, wall shear stresses, and pulse wave propagation. However, their success heavily relies on tedious pre-processing and calibration procedures that typically induce a significant computational cost, thus hampering their clinical applicability. In this work we put forth a machine learning framework that enables the seamless synthesis of non-invasive in-vivo measurement techniques and computational flow dynamics models derived from first physical principles. We illustrate this new paradigm by showing how one-dimensional models of pulsatile flow can be used to constrain the output of deep neural networks such that their predictions satisfy the conservation of mass and momentum principles. Once trained on noisy and scattered clinical data of flow and wall displacement, these networks can return physically consistent predictions for velocity, pressure and wall displacement pulse wave propagation, all without the need to employ conventional simulators. A simple post-processing of these outputs can also provide a relatively cheap and effective way for estimating Windkessel model parameters that are required for the calibration of traditional computational models. The effectiveness of the proposed techniques is demonstrated through a series of prototype benchmarks, as well as a realistic clinical case involving in-vivo measurements near the aorta/carotid bifurcation of a healthy human subject.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助又如何采纳,获得10
刚刚
Owen应助优美紫槐采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
赘婿应助冷艳的小懒虫采纳,获得10
6秒前
称心的晓霜完成签到,获得积分20
6秒前
10秒前
李大刚完成签到 ,获得积分10
11秒前
完美世界应助称心的晓霜采纳,获得10
11秒前
14秒前
15秒前
地理牛马发布了新的文献求助10
15秒前
Gy完成签到,获得积分10
16秒前
16秒前
yang发布了新的文献求助10
17秒前
20秒前
Gy发布了新的文献求助30
20秒前
Auralis完成签到 ,获得积分10
24秒前
地理牛马发布了新的文献求助10
26秒前
27秒前
萌萌0522发布了新的文献求助10
32秒前
清新的筝完成签到,获得积分10
32秒前
32秒前
久久丫完成签到 ,获得积分10
33秒前
36秒前
潘广瑞完成签到,获得积分10
37秒前
lyp完成签到 ,获得积分10
40秒前
41秒前
懒洋洋发布了新的文献求助10
48秒前
51秒前
开朗白山完成签到,获得积分10
53秒前
可爱的函函应助地理牛马采纳,获得10
53秒前
yuntong完成签到 ,获得积分10
53秒前
Akim应助缥缈的映萱采纳,获得10
57秒前
CYL07完成签到 ,获得积分10
58秒前
NattyPoe完成签到,获得积分10
1分钟前
呱呱完成签到,获得积分10
1分钟前
zuolan完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657681
求助须知:如何正确求助?哪些是违规求助? 4811421
关于积分的说明 15080062
捐赠科研通 4815885
什么是DOI,文献DOI怎么找? 2576948
邀请新用户注册赠送积分活动 1531973
关于科研通互助平台的介绍 1490462