自回归模型
计算机科学
变压器
时间序列
人工智能
推论
机器学习
计量经济学
工程类
数学
电压
电气工程
作者
Kai Chen,Guang Chen,Dan Xu,Lijun Zhang,Yuyao Huang,Alois Knoll
出处
期刊:arXiv: Learning
日期:2021-02-10
被引量:2
摘要
Although Transformer has made breakthrough success in widespread domains especially in Natural Language Processing (NLP), applying it to time series forecasting is still a great challenge. In time series forecasting, the autoregressive decoding of canonical Transformer models could introduce huge accumulative errors inevitably. Besides, utilizing Transformer to deal with spatial-temporal dependencies in the problem still faces tough difficulties.~To tackle these limitations, this work is the first attempt to propose a Non-Autoregressive Transformer architecture for time series forecasting, aiming at overcoming the time delay and accumulative error issues in the canonical Transformer. Moreover, we present a novel spatial-temporal attention mechanism, building a bridge by a learned temporal influence map to fill the gaps between the spatial and temporal attention, so that spatial and temporal dependencies can be processed integrally. Empirically, we evaluate our model on diversified ego-centric future localization datasets and demonstrate state-of-the-art performance on both real-time and accuracy.
科研通智能强力驱动
Strongly Powered by AbleSci AI