A Machine Learning Approach Enables Quantitative Measurement of Liver Histology and Disease Monitoring in NASH

肝硬化 医学 纤维化 疾病 临床试验 肝病 随机对照试验 病态的 脂肪变性 内科学 病理 放射科
作者
Amaro Taylor‐Weiner,Harsha Pokkalla,Ling Han,Catherine Jia,Ryan S. Huss,Chuhan Chung,Hunter Elliott,Benjamin Glass,Kishalve Pethia,Oscar Carrasco‐Zevallos,Chinmay Shukla,Urmila Khettry,Robert M. Najarían,Ross Taliano,G. Mani Subramanian,Robert P. Myers,Ilan Wapinski,Aditya Khosla,Murray B. Resnick,Michael Montalto
出处
期刊:Hepatology [Lippincott Williams & Wilkins]
卷期号:74 (1): 133-147 被引量:152
标识
DOI:10.1002/hep.31750
摘要

Background and Aims Manual histological assessment is currently the accepted standard for diagnosing and monitoring disease progression in NASH, but is limited by variability in interpretation and insensitivity to change. Thus, there is a critical need for improved tools to assess liver pathology in order to risk stratify NASH patients and monitor treatment response. Approach and Results Here, we describe a machine learning (ML)‐based approach to liver histology assessment, which accurately characterizes disease severity and heterogeneity, and sensitively quantifies treatment response in NASH. We use samples from three randomized controlled trials to build and then validate deep convolutional neural networks to measure key histological features in NASH, including steatosis, inflammation, hepatocellular ballooning, and fibrosis. The ML‐based predictions showed strong correlations with expert pathologists and were prognostic of progression to cirrhosis and liver‐related clinical events. We developed a heterogeneity‐sensitive metric of fibrosis response, the Deep Learning Treatment Assessment Liver Fibrosis score, which measured antifibrotic treatment effects that went undetected by manual pathological staging and was concordant with histological disease progression. Conclusions Our ML method has shown reproducibility and sensitivity and was prognostic for disease progression, demonstrating the power of ML to advance our understanding of disease heterogeneity in NASH, risk stratify affected patients, and facilitate the development of therapies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
倪倪发布了新的文献求助10
1秒前
流年发布了新的文献求助10
2秒前
莲子青如水完成签到,获得积分10
2秒前
2秒前
NN应助大喜子采纳,获得10
2秒前
Chenfofo发布了新的文献求助10
3秒前
FashionBoy应助别摘小红花采纳,获得10
4秒前
4秒前
7秒前
77发布了新的文献求助10
7秒前
周周发布了新的文献求助10
9秒前
蟹蟹发布了新的文献求助10
9秒前
爆米花应助璇玑采纳,获得10
9秒前
10秒前
10秒前
11秒前
zwk应助wxnice采纳,获得10
12秒前
cherry完成签到,获得积分10
12秒前
亚亚发布了新的文献求助10
12秒前
寒冷的寻菱完成签到,获得积分10
13秒前
负责月光完成签到,获得积分20
14秒前
你是我的小月亮完成签到 ,获得积分10
14秒前
叛逆黑洞发布了新的文献求助10
14秒前
Arueliano发布了新的文献求助10
14秒前
16秒前
桐桐应助蟹蟹采纳,获得10
17秒前
负责月光发布了新的文献求助10
18秒前
Inten完成签到,获得积分10
18秒前
小刘完成签到,获得积分10
20秒前
20秒前
情怀应助Potter采纳,获得10
20秒前
二掌柜发布了新的文献求助10
21秒前
23秒前
fdsdvczx发布了新的文献求助10
25秒前
27秒前
香蕉觅云应助科研通管家采纳,获得10
27秒前
fd163c应助科研通管家采纳,获得10
27秒前
酷波er应助科研通管家采纳,获得10
27秒前
susu应助科研通管家采纳,获得20
27秒前
SciGPT应助科研通管家采纳,获得10
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
The Finite Element Method Its Basis and Fundamentals 2000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Geotechnical characterization of slope movements 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3752811
求助须知:如何正确求助?哪些是违规求助? 3296371
关于积分的说明 10093570
捐赠科研通 3011229
什么是DOI,文献DOI怎么找? 1653678
邀请新用户注册赠送积分活动 788339
科研通“疑难数据库(出版商)”最低求助积分说明 752809