亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent fault identification for industrial automation system via multi-scale convolutional generative adversarial network with partially labeled samples

卷积神经网络 自动化 计算机科学 人工智能 鉴别器 人工神经网络 比例(比率) 机器学习 过程(计算) 深度学习 鉴定(生物学) 模式识别(心理学) 断层(地质) 数据挖掘 工程类 机械工程 电信 植物 物理 量子力学 探测器 地震学 生物 地质学 操作系统
作者
Tongyang Pan,Jinglong Chen,Jinsong Xie,Yuanhong Chang,Zitong Zhou
出处
期刊:Isa Transactions [Elsevier BV]
卷期号:101: 379-389 被引量:67
标识
DOI:10.1016/j.isatra.2020.01.014
摘要

Rolling bearings are the widely used parts in most of the industrial automation systems. As a result, intelligent fault identification of rolling bearing is important to ensure the stable operation of the industrial automation systems. However, a major problem in intelligent fault identification is that it needs a large number of labeled samples to obtain a well-trained model. Aiming at this problem, the paper proposes a semi-supervised multi-scale convolutional generative adversarial network for bearing fault identification which uses partially labeled samples and sufficient unlabeled samples for training. The network adopts a one-dimensional multi-scale convolutional neural network as the discriminator and a multi-scale deconvolutional neural network as the generator and the model is trained through an adversarial process. Because of the full use of unlabeled samples, the proposed semi-supervised model can detect the faults in bearings with limited labeled samples. The proposed method is tested on three datasets and the average classification accuracy arrived at of 100%, 99.28% and 96.58% respectively Results indicate that the proposed semi-supervised convolutional generative adversarial network achieves satisfactory performance in bearing fault identification when the labeled data are insufficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
碗碗豆喵完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
9秒前
11秒前
14秒前
14秒前
贝儿发布了新的文献求助10
17秒前
大模型应助贝儿采纳,获得10
24秒前
矮小的珠发布了新的文献求助10
44秒前
小二郎应助矮小的珠采纳,获得10
1分钟前
1分钟前
阿超完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
maria_takayama完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
通科研完成签到 ,获得积分10
1分钟前
下雨天爱吃鱼完成签到,获得积分10
1分钟前
脑洞疼应助evil采纳,获得10
2分钟前
cc应助科研通管家采纳,获得10
2分钟前
开心的瘦子完成签到,获得积分10
2分钟前
乐观无心完成签到,获得积分10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
vbnn完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
123发布了新的文献求助10
4分钟前
4分钟前
4分钟前
123完成签到,获得积分20
4分钟前
gyx完成签到 ,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
LEMONS应助123采纳,获得10
4分钟前
4分钟前
sujingbo完成签到 ,获得积分10
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957065
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111255
捐赠科研通 3234121
什么是DOI,文献DOI怎么找? 1787751
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802264