POL-SAR Image Classification Based on Modified Stacked Autoencoder Network and Data Distribution

Softmax函数 自编码 模式识别(心理学) 计算机科学 合成孔径雷达 人工智能 规范化(社会学) 像素 上下文图像分类 分类器(UML) 特征提取 人工神经网络 图像(数学) 人类学 社会学
作者
Jianlong Wang,Biao Hou,Licheng Jiao,Shuang Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:58 (3): 1678-1695 被引量:16
标识
DOI:10.1109/tgrs.2019.2947633
摘要

This article proposes a novel autoencoder (AE) network based on the distribution of polarimetric synthetic aperture radar (POL-SAR) data matrix, called a mixture autoencoder (MAE). Through a detailed analysis of the data distribution POL-SAR data matrix, a normalization method is also presented in succession. The proposed MAE defines the data error term in the loss function according to the data distribution. It can be regarded as a process of unsupervised feature extraction designed specifically for POL-SAR data matrix. Then, a softmax classifier is trained with the help of data features and the corresponding label information. Next, a stacked MAE (SMAE) network is reasonably constructed by considering the data distribution among different layers. Finally, this article also presents a classification network through discarding the decoder process of the proposed SMAE and connecting with a softmax classifier. The SMAE is trained layer by layer using the unlabeled data. The softmax classifier is also trained with a small number of labeled pixels. With parameters obtained from the above-mentioned procedures as the initial parameters, the whole classification network is trained by the labeled pixels to get a well-trained model, which is used for predicting the corresponding label of the pixel in the data set. Three real POL-SAR data sets, including the AIR-SAR L-band data of Flevoland, The Netherlands, are used in the experiments. Compared with one classical algorithm and two related models with the similar structure, both the proposed methods show improvements in overall accuracy and efficiency as well as possess better adaptability of the parameter and preferable consistency with the classification performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
yitang发布了新的文献求助10
1秒前
涛浪发布了新的文献求助10
1秒前
2秒前
2秒前
乔治韦斯莱完成签到 ,获得积分10
3秒前
Jenny应助圈圈采纳,获得10
3秒前
3秒前
呆萌完成签到 ,获得积分10
3秒前
啾啾完成签到,获得积分10
3秒前
脑洞疼应助hhy采纳,获得10
4秒前
Zhong发布了新的文献求助10
6秒前
6秒前
神仙也抠脚丫完成签到,获得积分10
6秒前
6秒前
7秒前
岩中花树完成签到,获得积分10
7秒前
7秒前
科研小白完成签到,获得积分10
8秒前
8秒前
追梦发布了新的文献求助10
8秒前
8秒前
豆包完成签到,获得积分10
8秒前
怕孤单的耳机完成签到,获得积分10
8秒前
成就梦松发布了新的文献求助10
8秒前
Donnie发布了新的文献求助10
9秒前
scc完成签到,获得积分10
9秒前
呼叫554发布了新的文献求助30
9秒前
Ava应助向北游采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
科研通AI5应助MRCHONG采纳,获得10
10秒前
Simon应助科研通管家采纳,获得10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
wangg完成签到,获得积分20
10秒前
10秒前
Zn应助科研通管家采纳,获得20
10秒前
吹雪完成签到,获得积分0
10秒前
暴躁四叔应助科研通管家采纳,获得20
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672