已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

POL-SAR Image Classification Based on Modified Stacked Autoencoder Network and Data Distribution

Softmax函数 自编码 模式识别(心理学) 计算机科学 合成孔径雷达 人工智能 规范化(社会学) 像素 上下文图像分类 分类器(UML) 特征提取 人工神经网络 图像(数学) 人类学 社会学
作者
Jianlong Wang,Biao Hou,Licheng Jiao,Shuang Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:58 (3): 1678-1695 被引量:16
标识
DOI:10.1109/tgrs.2019.2947633
摘要

This article proposes a novel autoencoder (AE) network based on the distribution of polarimetric synthetic aperture radar (POL-SAR) data matrix, called a mixture autoencoder (MAE). Through a detailed analysis of the data distribution POL-SAR data matrix, a normalization method is also presented in succession. The proposed MAE defines the data error term in the loss function according to the data distribution. It can be regarded as a process of unsupervised feature extraction designed specifically for POL-SAR data matrix. Then, a softmax classifier is trained with the help of data features and the corresponding label information. Next, a stacked MAE (SMAE) network is reasonably constructed by considering the data distribution among different layers. Finally, this article also presents a classification network through discarding the decoder process of the proposed SMAE and connecting with a softmax classifier. The SMAE is trained layer by layer using the unlabeled data. The softmax classifier is also trained with a small number of labeled pixels. With parameters obtained from the above-mentioned procedures as the initial parameters, the whole classification network is trained by the labeled pixels to get a well-trained model, which is used for predicting the corresponding label of the pixel in the data set. Three real POL-SAR data sets, including the AIR-SAR L-band data of Flevoland, The Netherlands, are used in the experiments. Compared with one classical algorithm and two related models with the similar structure, both the proposed methods show improvements in overall accuracy and efficiency as well as possess better adaptability of the parameter and preferable consistency with the classification performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助笨笨善若采纳,获得10
1秒前
1秒前
Iris发布了新的文献求助10
1秒前
钟D摆完成签到 ,获得积分10
2秒前
ll发布了新的文献求助10
4秒前
7秒前
Iris完成签到,获得积分10
7秒前
7秒前
Yixuan_Zou发布了新的文献求助10
8秒前
吕露完成签到,获得积分20
8秒前
杜123发布了新的文献求助30
11秒前
CHAIZH发布了新的文献求助10
12秒前
Akim应助优翎采纳,获得10
14秒前
科研通AI2S应助欧阳正义采纳,获得10
15秒前
Y191206完成签到,获得积分10
15秒前
李健应助ll采纳,获得10
15秒前
领导范儿应助I Think采纳,获得10
15秒前
Zz完成签到,获得积分10
16秒前
乐乐应助个性凝天采纳,获得10
17秒前
guozizi发布了新的文献求助30
17秒前
杜123完成签到,获得积分10
20秒前
26秒前
28秒前
SYJ完成签到,获得积分10
33秒前
leclare发布了新的文献求助10
33秒前
可乐不加冰完成签到 ,获得积分10
36秒前
缥缈浩然发布了新的文献求助10
37秒前
39秒前
39秒前
39秒前
lzx应助濮阳冰海采纳,获得50
39秒前
小张完成签到 ,获得积分10
42秒前
43秒前
44秒前
44秒前
个性凝天发布了新的文献求助10
45秒前
老豆芽24完成签到,获得积分10
45秒前
慕青应助俏皮火采纳,获得10
45秒前
45秒前
小可爱发布了新的文献求助10
46秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968054
求助须知:如何正确求助?哪些是违规求助? 3513070
关于积分的说明 11166315
捐赠科研通 3248263
什么是DOI,文献DOI怎么找? 1794163
邀请新用户注册赠送积分活动 874892
科研通“疑难数据库(出版商)”最低求助积分说明 804626