Multi-View K-Means Clustering With Adaptive Sparse Memberships and Weight Allocation

聚类分析 计算机科学 质心 数据挖掘 稀疏矩阵 趋同(经济学) 基质(化学分析) 模式识别(心理学) 人工智能 物理 材料科学 量子力学 经济 复合材料 高斯分布 经济增长
作者
Junwei Han,Jinglin Xu,Feiping Nie,Xuelong Li
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 816-827 被引量:50
标识
DOI:10.1109/tkde.2020.2986201
摘要

Recently, many real-world applications exploit multi-view data, which is collected from diverse domains or obtained from various feature extractors and reflect different properties or distributions of the data. In this work, a novel unsupervised multi-view framework is proposed to cluster such data. The proposed method, called Multi-View clustering with Adaptive Sparse Memberships and Weight Allocation (MVASM), pays more attention to constructing a common membership matrix with proper sparseness over different views and learns the centroid matrix and its corresponding weight of each view. Concretely, MVASM method attempts to learn a common and flexible sparse membership matrix to indicate the clustering, which explores the underlying consensus information of multiple views, and solves the multiple centroid matrices and weights to utilize the view-specific information and further modifies the above-mentioned membership matrix. In addition, the theoretical analysis, including the determination of the power exponent parameter, convergence analysis, and complexity analysis are also presented. Compared to the state-of-the-art methods, the proposed method improves the performance of clustering on different public datasets and demonstrates its reasonability and superiority.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦完成签到,获得积分10
2秒前
洞两发布了新的文献求助10
2秒前
2秒前
2秒前
bt4567发布了新的文献求助10
3秒前
秀丽静曼发布了新的文献求助10
3秒前
沉静的之桃完成签到 ,获得积分10
3秒前
3秒前
尼古拉斯佩奇完成签到,获得积分10
3秒前
彭于晏应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
wangxinji完成签到,获得积分10
5秒前
小青椒应助科研通管家采纳,获得200
5秒前
5秒前
ding应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
CYANjane应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
Frank应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
qingmoheng应助科研通管家采纳,获得50
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
梓然完成签到,获得积分10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
SciGPT应助codwest采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532022
求助须知:如何正确求助?哪些是违规求助? 4620823
关于积分的说明 14574972
捐赠科研通 4560552
什么是DOI,文献DOI怎么找? 2498894
邀请新用户注册赠送积分活动 1478828
关于科研通互助平台的介绍 1450125