作者
Zhen Dong,Fuxun Liang,Bisheng Yang,Yusheng Xu,Yufu Zang,Jianping Li,Yuan Wang,Wenxia Dai,Hongchao Fan,Juha Hyyppä,Uwe Stilla
摘要
This study had two main aims: (1) to provide a comprehensive review of terrestrial laser scanner (TLS) point cloud registration methods and a better understanding of their strengths and weaknesses; and (2) to provide a large-scale benchmark data set (Wuhan University TLS: Whu-TLS) to support the development of cutting-edge TLS point cloud registration methods, especially deep learning-based methods. In particular, we first conducted a thorough review of TLS point cloud registration methods in terms of pairwise coarse registration, pairwise fine registration, and multiview registration, as well as analyzing their strengths, weaknesses, and future research trends. We then reviewed the existing benchmark data sets (e.g., ETH Dataset and Robotic 3D Scanning Repository) for TLS point cloud registration and summarized their limitations. Finally, a new benchmark data set was assembled from 11 different environments (i.e., subway station, high-speed railway platform, mountain, forest, park, campus, residence, riverbank, heritage building, underground excavation, and tunnel environments) with variations in the point density, clutter, and occlusion. In addition, we summarized future research trends in this area, including auxiliary data-guided registration, deep learning-based registration, and multi-temporal point cloud registration.