煅烧
材料科学
扩散
离子
多孔性
化学工程
纳米技术
钠
催化作用
复合材料
化学
生物化学
热力学
物理
工程类
有机化学
冶金
作者
Mengmeng Yin,Dan Zhao,Caihong Feng,Wei Zhou,Qingze Jiao,Xueting Feng,Shanshan Wang,Yun Zhao,Hansheng Li,Tongying Feng
出处
期刊:ACS Sustainable Chemistry & Engineering
[American Chemical Society]
日期:2020-04-01
卷期号:8 (16): 6305-6314
被引量:54
标识
DOI:10.1021/acssuschemeng.9b07831
摘要
Herein, uniform Co9S8 hollow boxes (Co9S8-HB) with double open ends have been fabricated by a facile technique involving a solvothermal and subsequent calcination process. On the basis of a time-dependent morphological evolution, the generation mechanism of novel Co9S8-HBs came from the self-assembly process of nanoparticles along their height direction. The novel hollow architecture with openings at both ends offers a short ion/electron transport path, enhances the diffusion ability of sodium ion, as well as relaxes mechanical stress upon cycling. Consequently, the unique structure and pseudocapacitive effect endow the Co9S8-HB electrode with long-term cyclic capability and an impressive rate performance for sodium-ion storage. It delivers a reversible specific capacity of 520 mAh g–1 at 0.5 A g–1 after 100 cycles. Notably, it preserves a high capacity of 464 and 405.6 mAh g–1 at 5 and 10 A g–1, after 3000 and 7000 cycles, respectively, indicating an ultralong cyclic performance. Besides, the galvanostatic intermittent titration technique (GITT) result reveals that the porous hollow structures of Co9S8-HB boost the Na+ diffusion coefficient, ensuring a glorious cycling performance and exceptional rate capability. Most importantly, the successfully paired Na3V2(PO4)3||Co9S8-HB full cell remains at a stably reversible capacity of 101 mAh g–1 at 1 A g–1 after 600 cycles. The above results show that the novel Co9S8-HB can be a prospective candidate for high-performance sodium-ion batteries in future applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI