Detection of perineural invasion in prostate needle biopsies with deep neural networks

旁侵犯 一致性 活检 医学 前列腺活检 接收机工作特性 前列腺癌 前列腺 卡帕 放射科 人工智能 内科学 计算机科学 癌症 数学 几何学
作者
Kimmo Kartasalo,Peter Ström,Pekka Ruusuvuori,Hemamali Samaratunga,Brett Delahunt,Toyonori Tsuzuki,Martin Eklund,Lars Egevad
出处
期刊:Virchows Archiv [Springer Nature]
卷期号:481 (1): 73-82 被引量:20
标识
DOI:10.1007/s00428-022-03326-3
摘要

Abstract The presence of perineural invasion (PNI) by carcinoma in prostate biopsies has been shown to be associated with poor prognosis. The assessment and quantification of PNI are, however, labor intensive. To aid pathologists in this task, we developed an artificial intelligence (AI) algorithm based on deep neural networks. We collected, digitized, and pixel-wise annotated the PNI findings in each of the approximately 80,000 biopsy cores from the 7406 men who underwent biopsy in a screening trial between 2012 and 2014. In total, 485 biopsy cores showed PNI. We also digitized more than 10% ( n = 8318) of the PNI negative biopsy cores. Digitized biopsies from a random selection of 80% of the men were used to build the AI algorithm, while 20% were used to evaluate its performance. For detecting PNI in prostate biopsy cores, the AI had an estimated area under the receiver operating characteristics curve of 0.98 (95% CI 0.97–0.99) based on 106 PNI positive cores and 1652 PNI negative cores in the independent test set. For a pre-specified operating point, this translates to sensitivity of 0.87 and specificity of 0.97. The corresponding positive and negative predictive values were 0.67 and 0.99, respectively. The concordance of the AI with pathologists, measured by mean pairwise Cohen’s kappa (0.74), was comparable to inter-pathologist concordance (0.68 to 0.75). The proposed algorithm detects PNI in prostate biopsies with acceptable performance. This could aid pathologists by reducing the number of biopsies that need to be assessed for PNI and by highlighting regions of diagnostic interest.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shuo发布了新的文献求助10
刚刚
梅森发布了新的文献求助10
刚刚
刚刚
背后思卉应助LX采纳,获得10
刚刚
1秒前
wang完成签到,获得积分10
1秒前
abrin08完成签到,获得积分10
1秒前
星河完成签到,获得积分10
2秒前
2秒前
Akim应助自觉的溪灵采纳,获得10
3秒前
科研小能手完成签到,获得积分10
3秒前
虞无声发布了新的文献求助10
3秒前
4秒前
Lucy发布了新的文献求助10
4秒前
5秒前
zyx完成签到 ,获得积分10
6秒前
斯文败类应助MS903采纳,获得30
7秒前
无谓发布了新的文献求助10
7秒前
KK发布了新的文献求助10
7秒前
8秒前
Tao发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
10秒前
吴陈完成签到,获得积分10
11秒前
11秒前
希望天下0贩的0应助wugkazh采纳,获得30
12秒前
萧寒发布了新的文献求助10
12秒前
12秒前
manbo发布了新的文献求助10
12秒前
WYP完成签到,获得积分10
12秒前
无谓完成签到,获得积分10
13秒前
13秒前
青mu发布了新的文献求助10
14秒前
现代的寻雪完成签到,获得积分10
15秒前
immortel发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600893
求助须知:如何正确求助?哪些是违规求助? 4686444
关于积分的说明 14843995
捐赠科研通 4678825
什么是DOI,文献DOI怎么找? 2539074
邀请新用户注册赠送积分活动 1505973
关于科研通互助平台的介绍 1471241