亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection of perineural invasion in prostate needle biopsies with deep neural networks

旁侵犯 一致性 活检 医学 前列腺活检 接收机工作特性 前列腺癌 前列腺 卡帕 放射科 人工智能 内科学 计算机科学 癌症 数学 几何学
作者
Kimmo Kartasalo,Peter Ström,Pekka Ruusuvuori,Hemamali Samaratunga,Brett Delahunt,Toyonori Tsuzuki,Martin Eklund,Lars Egevad
出处
期刊:Virchows Archiv [Springer Nature]
卷期号:481 (1): 73-82 被引量:20
标识
DOI:10.1007/s00428-022-03326-3
摘要

Abstract The presence of perineural invasion (PNI) by carcinoma in prostate biopsies has been shown to be associated with poor prognosis. The assessment and quantification of PNI are, however, labor intensive. To aid pathologists in this task, we developed an artificial intelligence (AI) algorithm based on deep neural networks. We collected, digitized, and pixel-wise annotated the PNI findings in each of the approximately 80,000 biopsy cores from the 7406 men who underwent biopsy in a screening trial between 2012 and 2014. In total, 485 biopsy cores showed PNI. We also digitized more than 10% ( n = 8318) of the PNI negative biopsy cores. Digitized biopsies from a random selection of 80% of the men were used to build the AI algorithm, while 20% were used to evaluate its performance. For detecting PNI in prostate biopsy cores, the AI had an estimated area under the receiver operating characteristics curve of 0.98 (95% CI 0.97–0.99) based on 106 PNI positive cores and 1652 PNI negative cores in the independent test set. For a pre-specified operating point, this translates to sensitivity of 0.87 and specificity of 0.97. The corresponding positive and negative predictive values were 0.67 and 0.99, respectively. The concordance of the AI with pathologists, measured by mean pairwise Cohen’s kappa (0.74), was comparable to inter-pathologist concordance (0.68 to 0.75). The proposed algorithm detects PNI in prostate biopsies with acceptable performance. This could aid pathologists by reducing the number of biopsies that need to be assessed for PNI and by highlighting regions of diagnostic interest.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
科研通AI6应助邓润杰采纳,获得10
7秒前
FashionBoy应助傻傻的修洁采纳,获得10
9秒前
情怀应助Radiance采纳,获得10
13秒前
wangxw完成签到,获得积分10
14秒前
16秒前
科研通AI2S应助傻傻的修洁采纳,获得10
16秒前
1033524682发布了新的文献求助30
20秒前
20秒前
neao完成签到 ,获得积分10
23秒前
Lucas应助邓润杰采纳,获得10
24秒前
Radiance发布了新的文献求助10
26秒前
Ava应助傻傻的修洁采纳,获得10
32秒前
Radiance完成签到,获得积分10
34秒前
ceeray23发布了新的文献求助20
34秒前
丘比特应助邓润杰采纳,获得10
35秒前
1033524682完成签到,获得积分10
36秒前
成就觅海完成签到 ,获得积分10
37秒前
窝不想写论文完成签到 ,获得积分10
40秒前
43秒前
44秒前
科研通AI6应助Li采纳,获得50
45秒前
小马甲应助君寻采纳,获得10
45秒前
46秒前
46秒前
46秒前
传奇3应助邓润杰采纳,获得10
47秒前
sandy发布了新的文献求助10
51秒前
科研通AI6应助MIMI采纳,获得10
52秒前
科研通AI6应助邓润杰采纳,获得10
55秒前
在水一方应助傻傻的修洁采纳,获得10
59秒前
科研通AI6应助邓润杰采纳,获得10
1分钟前
Akaza完成签到 ,获得积分10
1分钟前
1分钟前
高兴宝贝完成签到 ,获得积分10
1分钟前
打打应助傻傻的修洁采纳,获得10
1分钟前
脑洞疼应助munchys采纳,获得10
1分钟前
mmyhn发布了新的文献求助10
1分钟前
达西苏发布了新的文献求助30
1分钟前
科研通AI6应助邓润杰采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573343
求助须知:如何正确求助?哪些是违规求助? 4659427
关于积分的说明 14724572
捐赠科研通 4599247
什么是DOI,文献DOI怎么找? 2524237
邀请新用户注册赠送积分活动 1494711
关于科研通互助平台的介绍 1464737