Detection of perineural invasion in prostate needle biopsies with deep neural networks

旁侵犯 一致性 活检 医学 前列腺活检 接收机工作特性 前列腺癌 前列腺 卡帕 放射科 人工智能 内科学 计算机科学 癌症 数学 几何学
作者
Kimmo Kartasalo,Peter Ström,Pekka Ruusuvuori,Hemamali Samaratunga,Brett Delahunt,Toyonori Tsuzuki,Martin Eklund,Lars Egevad
出处
期刊:Virchows Archiv [Springer Science+Business Media]
卷期号:481 (1): 73-82 被引量:15
标识
DOI:10.1007/s00428-022-03326-3
摘要

Abstract The presence of perineural invasion (PNI) by carcinoma in prostate biopsies has been shown to be associated with poor prognosis. The assessment and quantification of PNI are, however, labor intensive. To aid pathologists in this task, we developed an artificial intelligence (AI) algorithm based on deep neural networks. We collected, digitized, and pixel-wise annotated the PNI findings in each of the approximately 80,000 biopsy cores from the 7406 men who underwent biopsy in a screening trial between 2012 and 2014. In total, 485 biopsy cores showed PNI. We also digitized more than 10% ( n = 8318) of the PNI negative biopsy cores. Digitized biopsies from a random selection of 80% of the men were used to build the AI algorithm, while 20% were used to evaluate its performance. For detecting PNI in prostate biopsy cores, the AI had an estimated area under the receiver operating characteristics curve of 0.98 (95% CI 0.97–0.99) based on 106 PNI positive cores and 1652 PNI negative cores in the independent test set. For a pre-specified operating point, this translates to sensitivity of 0.87 and specificity of 0.97. The corresponding positive and negative predictive values were 0.67 and 0.99, respectively. The concordance of the AI with pathologists, measured by mean pairwise Cohen’s kappa (0.74), was comparable to inter-pathologist concordance (0.68 to 0.75). The proposed algorithm detects PNI in prostate biopsies with acceptable performance. This could aid pathologists by reducing the number of biopsies that need to be assessed for PNI and by highlighting regions of diagnostic interest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Atec发布了新的文献求助10
1秒前
2秒前
大个应助重要的秋尽采纳,获得10
3秒前
blackbird完成签到,获得积分10
4秒前
mm完成签到,获得积分10
4秒前
5秒前
xmh完成签到,获得积分10
6秒前
6秒前
7秒前
荷塘月色完成签到,获得积分10
8秒前
时尚战斗机应助粗心的胜采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
mm发布了新的文献求助10
9秒前
9秒前
blackbird发布了新的文献求助10
9秒前
11秒前
美满花生发布了新的文献求助10
12秒前
开放雪曼发布了新的文献求助10
12秒前
12秒前
fwstu发布了新的文献求助20
13秒前
14秒前
77发布了新的文献求助10
14秒前
15秒前
平淡冬亦完成签到 ,获得积分10
15秒前
如意含雁发布了新的文献求助10
15秒前
荷塘月色发布了新的文献求助10
15秒前
16秒前
JamesPei应助王wangxuanting采纳,获得10
17秒前
18秒前
18秒前
dzbb发布了新的文献求助10
19秒前
22秒前
小巧凡霜发布了新的文献求助10
22秒前
林林发布了新的文献求助10
23秒前
lp发布了新的文献求助10
23秒前
24秒前
fwstu完成签到,获得积分10
24秒前
24秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975458
求助须知:如何正确求助?哪些是违规求助? 3519866
关于积分的说明 11199996
捐赠科研通 3256213
什么是DOI,文献DOI怎么找? 1798133
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305