Detection of perineural invasion in prostate needle biopsies with deep neural networks

旁侵犯 一致性 活检 医学 前列腺活检 接收机工作特性 前列腺癌 前列腺 卡帕 放射科 人工智能 内科学 计算机科学 癌症 数学 几何学
作者
Kimmo Kartasalo,Peter Ström,Pekka Ruusuvuori,Hemamali Samaratunga,Brett Delahunt,Toyonori Tsuzuki,Martin Eklund,Lars Egevad
出处
期刊:Virchows Archiv [Springer Nature]
卷期号:481 (1): 73-82 被引量:15
标识
DOI:10.1007/s00428-022-03326-3
摘要

Abstract The presence of perineural invasion (PNI) by carcinoma in prostate biopsies has been shown to be associated with poor prognosis. The assessment and quantification of PNI are, however, labor intensive. To aid pathologists in this task, we developed an artificial intelligence (AI) algorithm based on deep neural networks. We collected, digitized, and pixel-wise annotated the PNI findings in each of the approximately 80,000 biopsy cores from the 7406 men who underwent biopsy in a screening trial between 2012 and 2014. In total, 485 biopsy cores showed PNI. We also digitized more than 10% ( n = 8318) of the PNI negative biopsy cores. Digitized biopsies from a random selection of 80% of the men were used to build the AI algorithm, while 20% were used to evaluate its performance. For detecting PNI in prostate biopsy cores, the AI had an estimated area under the receiver operating characteristics curve of 0.98 (95% CI 0.97–0.99) based on 106 PNI positive cores and 1652 PNI negative cores in the independent test set. For a pre-specified operating point, this translates to sensitivity of 0.87 and specificity of 0.97. The corresponding positive and negative predictive values were 0.67 and 0.99, respectively. The concordance of the AI with pathologists, measured by mean pairwise Cohen’s kappa (0.74), was comparable to inter-pathologist concordance (0.68 to 0.75). The proposed algorithm detects PNI in prostate biopsies with acceptable performance. This could aid pathologists by reducing the number of biopsies that need to be assessed for PNI and by highlighting regions of diagnostic interest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
雨的前世发布了新的文献求助10
刚刚
aliu完成签到,获得积分10
1秒前
1秒前
iNk应助加油采纳,获得10
2秒前
DATOU发布了新的文献求助10
3秒前
田様应助嘻嘻采纳,获得10
3秒前
飞逝的快乐时光完成签到 ,获得积分10
4秒前
比奇堡第一水母猎手海绵宝宝完成签到,获得积分10
5秒前
5秒前
5秒前
852应助迅速的网络采纳,获得10
6秒前
一叶舟完成签到,获得积分10
7秒前
dongkk发布了新的文献求助10
7秒前
aliu发布了新的文献求助10
7秒前
NexusExplorer应助顺利曼香采纳,获得10
7秒前
加油完成签到,获得积分10
8秒前
如初发布了新的文献求助10
8秒前
8秒前
乐乐应助小黄人采纳,获得20
8秒前
唐僧洗发用飘柔完成签到,获得积分20
9秒前
Feng发布了新的文献求助10
9秒前
10秒前
yanning完成签到,获得积分10
11秒前
11秒前
11秒前
萌福冲冲冲关注了科研通微信公众号
11秒前
隐形曼青应助向绝山采纳,获得10
12秒前
Ava应助史迪仔崽采纳,获得10
12秒前
12秒前
英俊的铭应助Mineme采纳,获得10
14秒前
cotyer完成签到,获得积分10
15秒前
lucky发布了新的文献求助10
17秒前
赘婿应助wh采纳,获得10
17秒前
shitzu完成签到 ,获得积分10
18秒前
18秒前
斯文天曼发布了新的文献求助10
18秒前
cotyer发布了新的文献求助10
19秒前
不予完成签到,获得积分10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3297232
求助须知:如何正确求助?哪些是违规求助? 2932727
关于积分的说明 8458768
捐赠科研通 2605447
什么是DOI,文献DOI怎么找? 1422342
科研通“疑难数据库(出版商)”最低求助积分说明 661364
邀请新用户注册赠送积分活动 644655