Time-variant system reliability analysis method for a small failure probability problem

可靠性(半导体) 克里金 极值理论 蒙特卡罗方法 替代模型 极值优化 随机变量 计算机科学 功能(生物学) 高斯分布 样品(材料) 样本量测定 循环(图论) 广义极值分布 数学优化 高斯过程 内环 最优化问题 统计 数学 化学 组合数学 控制器(灌溉) 功率(物理) 物理 元优化 生物 进化生物学 量子力学 色谱法 农学
作者
Huaming Qian,Yan‐Feng Li,Hong‐Zhong Huang
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:205: 107261-107261 被引量:60
标识
DOI:10.1016/j.ress.2020.107261
摘要

Abstract This paper proposes a time-variant system reliability analysis method by combining multiple response Gaussian process (MRGP) and subset simulation (SS) to solve the small failure probability problem. One common method for time-variant reliability analysis is based on the double-loop procedure where the inner loop is the optimization for extreme values and the outer loop is extreme-value-based reliability analysis. In this paper, a new single-loop strategy is firstly proposed to decouple the double-loop procedure by using the best value in current initial samples to approximate the extreme value, thus the extremal optimization in inner loop can be avoided. Then the MRGP model is used to construct the surrogate model of extreme value response surface for time-variant system reliability analysis based on the approximated extremums. Meanwhile, the Kriging model is also constructed based on the initial samples to assist in searching the new sample point. Furthermore, for selecting the new point that resides as close to the extreme value response surface as possible from the Monte Carlo simulation (MCS) sample pool, three learning functions (U-function, EFF-function and H-function) are respectively used to find the new random variable sample point based on the MRGP model and the expected improvement (EI) function is used to find the new time sample point based on the Kriging model. Finally, for reducing the size of candidate sample pool and the computing burden, the SS method is combined with the MRGP model to deal with the small failure probability problem. The effectiveness of the proposed method is also demonstrated by several examples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
杜青发布了新的文献求助10
刚刚
VAudreyV关注了科研通微信公众号
刚刚
1秒前
任性的诗兰完成签到,获得积分10
1秒前
落后百褶裙完成签到,获得积分10
1秒前
SciGPT应助15采纳,获得10
1秒前
人文完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
Xuer完成签到 ,获得积分10
2秒前
2秒前
www发布了新的文献求助10
3秒前
赘婿应助千玺的小粉丝儿采纳,获得10
3秒前
璐璐核桃露给璐璐核桃露的求助进行了留言
3秒前
情怀应助乖猫要努力采纳,获得10
3秒前
peter完成签到,获得积分10
3秒前
4秒前
愉快的铅笔完成签到,获得积分10
4秒前
David发布了新的文献求助10
4秒前
4秒前
4秒前
tufei完成签到,获得积分10
4秒前
mklwxhlsd发布了新的文献求助10
5秒前
科研通AI6应助荣荣采纳,获得10
5秒前
傲娇的项链完成签到,获得积分10
5秒前
看文献了发布了新的文献求助10
6秒前
小二郎应助DTO采纳,获得10
6秒前
筱筱发布了新的文献求助10
6秒前
天天发布了新的文献求助10
7秒前
新手小夏发布了新的文献求助10
7秒前
8秒前
夏季完成签到,获得积分10
8秒前
852应助MG采纳,获得10
9秒前
牛蛙丶丶发布了新的文献求助10
9秒前
轻松的小虾米完成签到,获得积分10
9秒前
汉堡包应助zhouyin2采纳,获得10
10秒前
lilili应助加油采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721