A novel adaptive discrete grey model with time-varying parameters for long-term photovoltaic power generation forecasting

过度拟合 非线性系统 计算机科学 光伏系统 网格 波动性(金融) 适应性 时间序列 数学优化 期限(时间) 人工神经网络 人工智能 计量经济学 工程类 机器学习 数学 经济 几何学 管理 物理 电气工程 量子力学
作者
Song Ding,Ruojin Li,Zui Tao
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:227: 113644-113644 被引量:93
标识
DOI:10.1016/j.enconman.2020.113644
摘要

The rapidly growing photovoltaic power generation (PPG) instigates stochastic volatility of electricity supply that may compromise the power grid’s stability and increase the grid imbalance cost. Therefore, accurate predictions of long-term PPG are of essential importance for the capacity deployment, plan improvement, consumption enhancement, and grid balance in systems with high penetration levels of PPG. Artificial neuron networks (ANNs) have been widely utilized to forecast the short-term PPG due to their strong nonlinear fitting competence that corresponds to the prerequisite for handling PPG samples characterized by volatility and nonlinearity. However, under the circumstances of the large time span, the insufficient data samples, and the periodicity existing in the long-term PPG datasets, the ANNs are easily stuck in overfitting and generate large forecasting deviations. Given this situation, a novel discrete grey model with time-varying parameters is initially designed to deal with various PPG time series featured with nonlinearity, periodicity, and volatility, which widely exist in the long-term PPG sequences. To be specific, improvements in this proposed model lie in the following aspects: first, the time-power item and periodic item are designated to compose the time-varying parameters to capture the nonlinear, periodic, and fluctuant developing trends of various time series. Second, owing to the complex nonlinear relationships between the above parameters and forecasting errors, the genetic algorithm applies shortcuts to seek optimum solutions and thereby enhances the prediction precision. Third, several practical properties of the proposed model are elaborated to further interpret the feasibility and adaptability of the proposed model. In experiments, a range of machine learning methods, autoregression models, and grey models are involved for comparisons to validate the feasibility and efficacy of the novel model, through the observations of the PPG in America and China. Finally, a superlative performance of the proposed model with the highest forecasting precision, small volatility of empirical results, and generalizability are confirmed by the aforementioned cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细腻天蓝完成签到 ,获得积分10
2秒前
yinlu完成签到 ,获得积分10
2秒前
刘佳婷完成签到,获得积分20
4秒前
哎嘿应助科研通管家采纳,获得10
6秒前
Loooong应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
哎嘿应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
Loooong应助科研通管家采纳,获得20
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
哎嘿应助科研通管家采纳,获得10
6秒前
兜兜应助科研通管家采纳,获得10
6秒前
Loooong应助科研通管家采纳,获得10
7秒前
Loooong应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
Loooong应助科研通管家采纳,获得20
7秒前
ycw992847127完成签到,获得积分10
7秒前
dengy完成签到,获得积分10
7秒前
风趣的灵枫完成签到 ,获得积分10
7秒前
烂漫的蜡烛完成签到 ,获得积分10
8秒前
CipherSage应助刘佳婷采纳,获得10
12秒前
路见不平完成签到,获得积分10
12秒前
franca2005完成签到 ,获得积分10
16秒前
一棵草完成签到,获得积分10
17秒前
薛布慧完成签到 ,获得积分10
18秒前
浩气长存完成签到 ,获得积分10
21秒前
Migue应助skskysky采纳,获得10
21秒前
懵懂的梦秋完成签到,获得积分20
22秒前
YQT完成签到 ,获得积分10
23秒前
筱谭完成签到 ,获得积分10
25秒前
聪慧的南风完成签到 ,获得积分10
28秒前
沉沉完成签到 ,获得积分0
34秒前
粗心的板栗完成签到 ,获得积分10
41秒前
42秒前
落后的皮卡丘完成签到,获得积分10
45秒前
感动归尘完成签到,获得积分10
48秒前
赖建琛完成签到 ,获得积分10
50秒前
清爽绮彤完成签到 ,获得积分10
51秒前
Peng完成签到 ,获得积分10
51秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162398
求助须知:如何正确求助?哪些是违规求助? 2813350
关于积分的说明 7899841
捐赠科研通 2472868
什么是DOI,文献DOI怎么找? 1316556
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142