法拉第效率
阳极
材料科学
阴极
剥离(纤维)
导电体
图层(电子)
电池(电)
电极
电镀(地质)
电流密度
化学工程
金属
集电器
复合材料
电解质
冶金
化学
功率(物理)
物理化学
工程类
地质学
物理
量子力学
地球物理学
作者
Junru Wang,Mengmeng Wang,Xiaodong He,Shuo Wang,Jiemin Dong,Chen Fei,Aqsa Yasmin,Chunhua Chen
出处
期刊:ACS applied energy materials
[American Chemical Society]
日期:2020-07-06
卷期号:3 (8): 7265-7271
被引量:14
标识
DOI:10.1021/acsaem.0c00055
摘要
Li metal is considered as an ideal anode material for next-generation high energy density batteries. However, the huge volume change during cycling and uncontrollable Li dendrites growth represent the main issues of a Li metal anode, resulting in a short lifespan, low Coulombic efficiency, and serious safety risks. Herein, a modified 3D conductive skeleton is obtained via a facial replacement reaction to introduce a Sb layer on the surface of a commercial Cu foam. In this way, a lithiophilic Li–Sb layer can be in situ formed during the cell activation. This modified Cu foam can accommodate the volume changes accompanying the cycling and reduce the local current density. The lithiophilic Li–Sb layer can guide smooth Li plating/stripping without forming Li dendrites. Consequently, such a Sb-modified Cu foam substrate displays a stable and high Coulombic efficiency over 600 cycles in half cells and a super long lifespan over 1800 h in asymmetrical cells. Moreover, the lithium full cells constructed by coupling it with a LiFePO4 cathode also demonstrate excellent cycling performance over 300 cycles at 5 C.
科研通智能强力驱动
Strongly Powered by AbleSci AI