Kinetic insights into glassy hydrogels with hydrogen bond complexes as the cross-links

材料科学 自愈水凝胶 甲基丙烯酰胺 氢键 微观结构 动态力学分析 化学工程 胶体 动力学 脆性 复合材料 聚合物 共聚物 高分子化学 分子 有机化学 化学 工程类 丙烯酰胺 物理 量子力学
作者
Xin Ning Zhang,Cong Du,Miao Du,Qiang Zheng,Zi Liang Wu
出处
期刊:Materials Today Physics [Elsevier BV]
卷期号:15: 100230-100230 被引量:42
标识
DOI:10.1016/j.mtphys.2020.100230
摘要

Revealing the structure formation kinetics is a long-term challenging issue in the development of tough hydrogels, although they are significant for understanding structure-property relationship and toughening mechanism. Here, we report a series of tough and stiff poly(methacrylamide-co-methacrylic acid) hydrogels, with a focus on the structure-property relationship and structure formation kinetics. These hydrogels in a glassy state possess moderate water content and excellent mechanical properties with Young's modulus up to 200 MPa. The microstructure of the gels changes from uniform to bicontinuous and then to colloidal network as the fraction of methacrylamide, fam, increases, accounting for the ductile-brittle transition of the mechanical performances. Sequential gelation and vitrification take place in the systems with relatively low fam to form transparent gels with a homogeneous matrix, whereas colloidal jamming and coarsening occur in the systems with high fam to form opaque gels with a colloidal network structure. The structure and properties of the glassy gels are determined by the hydrogen bond complexation and the microphase separation that are strengthened by the increase in fam. Based on these findings, the mechanical properties of hydrogels with high fam can be improved by suppressing the microphase separation during the gel synthesis. Understanding the structure-property relationship and regulation strategy of both microstructure and macroscopic performance of these glassy hydrogels should be inspirative for designing other tough materials with diverse applications as structural elements in biomedical and engineering fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助Bao采纳,获得10
1秒前
严逍遥完成签到,获得积分10
1秒前
2秒前
慕青应助青烟采纳,获得10
2秒前
小辉辉发布了新的文献求助10
3秒前
Ashui发布了新的文献求助10
4秒前
胡维红发布了新的文献求助10
7秒前
平常的忆文关注了科研通微信公众号
8秒前
坚定以筠发布了新的文献求助10
9秒前
zhengzehong完成签到,获得积分10
10秒前
Ying完成签到,获得积分10
11秒前
天天快乐应助等乙天采纳,获得10
11秒前
13秒前
Rondab应助最美夕阳红采纳,获得10
13秒前
小辉辉完成签到,获得积分20
14秒前
量子星尘发布了新的文献求助10
15秒前
归尘发布了新的文献求助10
15秒前
外向半梅发布了新的文献求助10
16秒前
FashionBoy应助You采纳,获得10
16秒前
ll完成签到 ,获得积分10
16秒前
小豆豆应助杭谷波采纳,获得10
16秒前
OK完成签到,获得积分10
17秒前
18秒前
开开开完成签到,获得积分10
18秒前
20秒前
21秒前
隐形曼青应助三岁采纳,获得10
21秒前
坚定以筠完成签到,获得积分10
21秒前
ding应助开开开采纳,获得10
23秒前
LaTeXer应助迷路海蓝采纳,获得50
23秒前
23秒前
23秒前
等乙天发布了新的文献求助10
24秒前
24秒前
胡维红完成签到,获得积分10
26秒前
27秒前
28秒前
29秒前
多多发布了新的文献求助10
30秒前
无花果应助外向半梅采纳,获得10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959309
求助须知:如何正确求助?哪些是违规求助? 3505589
关于积分的说明 11124738
捐赠科研通 3237345
什么是DOI,文献DOI怎么找? 1789116
邀请新用户注册赠送积分活动 871544
科研通“疑难数据库(出版商)”最低求助积分说明 802844