Comparison of the predictive outcomes for anti-tuberculosis drug-induced hepatotoxicity by different machine learning techniques

接收机工作特性 随机森林 试验装置 支持向量机 人工智能 机器学习 人工神经网络 单变量 肺结核 集合(抽象数据类型) 计算机科学 数据集 医学 考试(生物学) 多元统计 病理 古生物学 生物 程序设计语言
作者
Nai Hua Lai,Wan Chen Shen,Chun Nin Lee,Jui Chia Chang,Man Ching Hsu,Li Jen Kuo,Ming Yu,Hsiang‐Yin Chen
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:188: 105307-105307 被引量:25
标识
DOI:10.1016/j.cmpb.2019.105307
摘要

The study compared the predictive outcomes of artificial neural network, support vector machine and random forest on the occurrence of anti-tuberculosis drug-induced hepatotoxicity. The clinical and genomic data of patients treated with anti-tuberculosis drugs at Taipei Medical University-Wanfang Hospital were used as training sets, and those at Taipei Medical University-Shuang Ho Hospital served as test sets. Features were selected through a univariate risk factor analysis and literature evaluation. The accuracy, sensitivity, specificity, and the area under the receiver operating characteristic curve were calculated to compare the traditional, genomic, and combined models of the three techniques. Nine models were created with 7 clinical factors and 4 genotypes. Artificial neural network with clinical and genomic factors exhibited the best performance, with an accuracy of 88.67%, a sensitivity of 80%, and a specificity of 90.4% for the test set. The area under the receiver operating characteristic curve of this best model reached 0.894 for training set and 0.898 for test set, which was significantly better than 0.801 for training set and 0.728 for test set by support vector machine and 0.724 for training set and 0.718 for test set by random forest. Artificial neural network with clinical and genomic data can become a clinical useful tool in predicting anti-tuberculosis drug-induced hepatotoxicity. The machine learning technique can be an innovation to predict and prevent adverse drug reaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1no完成签到 ,获得积分10
刚刚
bkagyin应助TTT采纳,获得10
刚刚
图苏完成签到,获得积分10
1秒前
科研通AI5应助宁雨泽采纳,获得10
1秒前
寂寞的诗云完成签到,获得积分10
1秒前
源源源完成签到 ,获得积分10
2秒前
无奈完成签到,获得积分10
2秒前
2秒前
孤独的AD钙完成签到,获得积分10
2秒前
Aurorademon完成签到,获得积分10
2秒前
wwc完成签到,获得积分10
2秒前
Yxian完成签到,获得积分10
3秒前
LCX完成签到,获得积分10
3秒前
冷静芹菜完成签到 ,获得积分10
3秒前
居学尉完成签到,获得积分10
3秒前
非要叫我起个昵称完成签到,获得积分10
3秒前
李成哲完成签到,获得积分10
3秒前
Gloria完成签到,获得积分10
4秒前
lemon完成签到,获得积分10
4秒前
爱情哈尔完成签到,获得积分10
4秒前
bei完成签到 ,获得积分10
4秒前
David完成签到,获得积分10
4秒前
李小二完成签到,获得积分10
4秒前
minino完成签到 ,获得积分10
4秒前
4秒前
11完成签到,获得积分10
5秒前
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
曼夭非夭完成签到,获得积分10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得30
5秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556082
求助须知:如何正确求助?哪些是违规求助? 3131635
关于积分的说明 9392313
捐赠科研通 2831483
什么是DOI,文献DOI怎么找? 1556442
邀请新用户注册赠送积分活动 726605
科研通“疑难数据库(出版商)”最低求助积分说明 715912