Comparison of the predictive outcomes for anti-tuberculosis drug-induced hepatotoxicity by different machine learning techniques

接收机工作特性 随机森林 试验装置 支持向量机 人工智能 机器学习 人工神经网络 单变量 肺结核 集合(抽象数据类型) 计算机科学 数据集 医学 考试(生物学) 多元统计 病理 古生物学 生物 程序设计语言
作者
Nai Hua Lai,Wan Chen Shen,Chun Nin Lee,Jui Chia Chang,Man Ching Hsu,Li Jen Kuo,Ming Yu,Hsiang‐Yin Chen
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:188: 105307-105307 被引量:25
标识
DOI:10.1016/j.cmpb.2019.105307
摘要

The study compared the predictive outcomes of artificial neural network, support vector machine and random forest on the occurrence of anti-tuberculosis drug-induced hepatotoxicity. The clinical and genomic data of patients treated with anti-tuberculosis drugs at Taipei Medical University-Wanfang Hospital were used as training sets, and those at Taipei Medical University-Shuang Ho Hospital served as test sets. Features were selected through a univariate risk factor analysis and literature evaluation. The accuracy, sensitivity, specificity, and the area under the receiver operating characteristic curve were calculated to compare the traditional, genomic, and combined models of the three techniques. Nine models were created with 7 clinical factors and 4 genotypes. Artificial neural network with clinical and genomic factors exhibited the best performance, with an accuracy of 88.67%, a sensitivity of 80%, and a specificity of 90.4% for the test set. The area under the receiver operating characteristic curve of this best model reached 0.894 for training set and 0.898 for test set, which was significantly better than 0.801 for training set and 0.728 for test set by support vector machine and 0.724 for training set and 0.718 for test set by random forest. Artificial neural network with clinical and genomic data can become a clinical useful tool in predicting anti-tuberculosis drug-induced hepatotoxicity. The machine learning technique can be an innovation to predict and prevent adverse drug reaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助YA采纳,获得10
1秒前
2秒前
xzy998发布了新的文献求助50
3秒前
MOON完成签到,获得积分10
3秒前
烟花应助小郭采纳,获得10
4秒前
ZQ发布了新的文献求助10
5秒前
8秒前
tamo完成签到,获得积分10
9秒前
10秒前
赘婿应助生动从丹采纳,获得10
11秒前
苹果白凡发布了新的文献求助10
11秒前
14秒前
三胖应助嗳7采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
Hello应助科研通管家采纳,获得10
15秒前
英俊的铭应助钟迪采纳,获得10
15秒前
16秒前
Ki_Ayasato应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
丁娜完成签到,获得积分10
16秒前
16秒前
18秒前
18秒前
19秒前
歇儿哒哒完成签到,获得积分10
19秒前
19秒前
小郭发布了新的文献求助10
20秒前
子爵木完成签到 ,获得积分10
21秒前
22秒前
22秒前
小蘑菇应助咸云采纳,获得10
22秒前
自信寻真发布了新的文献求助10
22秒前
柒柒完成签到,获得积分10
23秒前
23秒前
le发布了新的文献求助10
24秒前
24秒前
24秒前
24秒前
追寻的莺完成签到 ,获得积分10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3443647
求助须知:如何正确求助?哪些是违规求助? 3039898
关于积分的说明 8978440
捐赠科研通 2728341
什么是DOI,文献DOI怎么找? 1496490
科研通“疑难数据库(出版商)”最低求助积分说明 691648
邀请新用户注册赠送积分活动 689213