材料科学
原电池
法拉第效率
氧化物
催化作用
化学工程
电化学
纳米技术
金属
纳米结构
氧化还原
电极
化学
冶金
工程类
有机化学
物理化学
作者
Mengyun Wang,Shengbo Zhang,Mei Li,Aiguo Han,Xinli Zhu,Qingfeng Ge,Jinyu Han,Hua Wang
标识
DOI:10.1007/s11705-019-1854-8
摘要
Novel, hierarchical, flower-like Ag/Cu2O and Au/Cu2O nanostructures were successfully fabricated and applied as efficient electrocatalysts for the electrochemical reduction of CO2. Cu2O nanospheres with a uniform size of ∼180 nm were initially synthesized. Thereafter, Cu2O was used as a sacrificial template to prepare a series of Ag/Cu2O composites through galvanic replacement. By varying the Ag/Cu atomic ratio, Ag0.125/Cu2O, having a hierarchical, flower-like nanostructure with intersecting Ag nanoflakes encompassing an inner Cu2O sphere, was prepared. The as-prepared Agx/Cu2O samples presented higher Faradaic efficiencies (FE) for CO and relatively suppressed H2 evolution than the parent Cu2O nanospheres due to the combination of Ag with Cu2O in the former. Notably, the highest CO evolution rate was achieved with Ag0.125/Cu2O due to the larger electroactive surface area furnished by the hierarchical structure. The same hierarchical flower-like structure was also obtained for the Au0.6/Cu2O composite, where the FECO (10%) was even higher than that of Ag0.125/Cu2O. Importantly, the results reveal that Ag0.125/Cu2O and Au0.6/Cu2O both exhibit remarkably improved stability relative to Cu2O. This study presents a facile method of developing hierarchical metal-oxide composites as efficient and stable electrocatalysts for the electrochemical reduction of CO2.
科研通智能强力驱动
Strongly Powered by AbleSci AI