Context-Aware Taxi Dispatching at City-Scale Using Deep Reinforcement Learning

背景(考古学) 比例(比率) 计算机科学 人工智能 强化学习 机器学习 地理 地图学 考古
作者
Zhidan Liu,Jiangzhou Li,Kaishun Wu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (3): 1996-2009 被引量:60
标识
DOI:10.1109/tits.2020.3030252
摘要

Proactive taxi dispatching is of great importance to balance taxi demand-supply gaps among different locations in a city. Recent advances primarily rely on deep reinforcement learning (DRL) to directly learn the optimal dispatching policy. These works, however, are still not sufficiently efficient because they overlook several pieces of valuable context information. As a result, they may generate quite a few improper actions and introduce unnecessary coordination costs. To improve existing works, we present COX – a context-aware taxi dispatching approach that incorporates rich contexts into DRL modeling for more efficient taxi reallocations. Specifically, rather than simply dividing the service area into grids, COX proposes a road connectivity aware clustering algorithm to divide the road network graph into zones for practical taxi dispatching. In addition, COX comprehensively analyzes zone-level taxi demands and supplies through accurate taxi demand prediction and timely updates of taxi statuses. COX improves the DRL modeling by integrating these derived contexts, e.g. , state representation with complete demand/supply data and sequential action generation with full coordination among idle taxis. In particular, we implement an environment simulator to train and evaluate COX using a large real-world taxi dataset. Extensive experiments show that COX outperforms state-of-the-art approaches on various performance metrics, e.g. , on average improving the total order values by 6.74%, while reducing the number of unserved taxi orders and passengers' waiting time by 4.92% and 44.84%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
圈儿完成签到,获得积分10
1秒前
2秒前
xiaopihaier完成签到,获得积分10
2秒前
3秒前
4秒前
Li发布了新的文献求助20
4秒前
科研通AI5应助星之茧采纳,获得30
5秒前
汀芷黎发布了新的文献求助10
5秒前
5秒前
妮妮妮完成签到 ,获得积分10
6秒前
7秒前
7秒前
elle发布了新的文献求助10
8秒前
科研通AI5应助linlin采纳,获得10
9秒前
10秒前
10秒前
高111完成签到,获得积分10
10秒前
英俊延恶发布了新的文献求助10
10秒前
LiuKun发布了新的文献求助10
11秒前
11秒前
13秒前
13秒前
13秒前
李爱国应助自然采纳,获得10
13秒前
14秒前
打打应助三脸茫然采纳,获得10
14秒前
Wsq发布了新的文献求助10
14秒前
科研通AI5应助王子娇采纳,获得10
15秒前
风城玫瑰完成签到,获得积分10
15秒前
16秒前
16秒前
ding应助elle采纳,获得10
16秒前
小澜孩完成签到,获得积分10
17秒前
孙婉莹发布了新的文献求助10
17秒前
18秒前
JZX发布了新的文献求助10
18秒前
zz发布了新的文献求助10
19秒前
李亚宁发布了新的文献求助10
20秒前
小澜孩发布了新的文献求助10
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
Recent progress and new developments in post-combustion carbon-capture technology with reactive solvents 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538518
求助须知:如何正确求助?哪些是违规求助? 3116237
关于积分的说明 9324419
捐赠科研通 2814030
什么是DOI,文献DOI怎么找? 1546420
邀请新用户注册赠送积分活动 720537
科研通“疑难数据库(出版商)”最低求助积分说明 712068