亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FaceNet: A unified embedding for face recognition and clustering

计算机科学 面部识别系统 人工智能 面子(社会学概念) 嵌入 模式识别(心理学) 聚类分析 社会科学 社会学
作者
Florian Schroff,Dmitry Kalenichenko,James Philbin
出处
期刊:Cornell University - arXiv 卷期号:: 815-823 被引量:8325
标识
DOI:10.1109/cvpr.2015.7298682
摘要

Despite significant recent advances in the field of face recognition [10, 14, 15, 17], implementing face verification and recognition efficiently at scale presents serious challenges to current approaches. In this paper we present a system, called FaceNet, that directly learns a mapping from face images to a compact Euclidean space where distances directly correspond to a measure offace similarity. Once this space has been produced, tasks such as face recognition, verification and clustering can be easily implemented using standard techniques with FaceNet embeddings asfeature vectors. Our method uses a deep convolutional network trained to directly optimize the embedding itself, rather than an intermediate bottleneck layer as in previous deep learning approaches. To train, we use triplets of roughly aligned matching / non-matching face patches generated using a novel online triplet mining method. The benefit of our approach is much greater representational efficiency: we achieve state-of-the-artface recognition performance using only 128-bytes perface. On the widely used Labeled Faces in the Wild (LFW) dataset, our system achieves a new record accuracy of 99.63%. On YouTube Faces DB it achieves 95.12%. Our system cuts the error rate in comparison to the best published result [15] by 30% on both datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无辜的黄豆完成签到 ,获得积分10
2秒前
吾系渣渣辉完成签到 ,获得积分10
5秒前
5秒前
123发布了新的文献求助10
6秒前
微醺潮汐完成签到,获得积分10
8秒前
mmyhn应助科研通管家采纳,获得20
11秒前
andrele应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
所所应助FanKun采纳,获得10
11秒前
Li发布了新的文献求助10
14秒前
123完成签到,获得积分10
15秒前
18秒前
上官若男应助殷琛采纳,获得10
21秒前
奥利奥完成签到 ,获得积分10
22秒前
srx完成签到 ,获得积分10
23秒前
禅依完成签到,获得积分10
24秒前
FanKun发布了新的文献求助10
24秒前
虾球发布了新的文献求助10
26秒前
28秒前
赘婿应助禅依采纳,获得10
28秒前
我不到啊完成签到 ,获得积分10
29秒前
彭于晏应助VERITAS采纳,获得10
31秒前
tomato发布了新的文献求助10
35秒前
36秒前
inRe发布了新的文献求助10
37秒前
39秒前
殷琛发布了新的文献求助10
41秒前
zz发布了新的文献求助10
45秒前
48秒前
49秒前
传奇3应助殷琛采纳,获得10
49秒前
50秒前
秦小狸完成签到 ,获得积分10
51秒前
VERITAS发布了新的文献求助10
53秒前
土豪的摩托完成签到 ,获得积分10
53秒前
55秒前
yezio完成签到 ,获得积分10
56秒前
怕黑鲂完成签到 ,获得积分10
58秒前
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627829
求助须知:如何正确求助?哪些是违规求助? 4714854
关于积分的说明 14963247
捐赠科研通 4785572
什么是DOI,文献DOI怎么找? 2555178
邀请新用户注册赠送积分活动 1516526
关于科研通互助平台的介绍 1476936