A numerical model for simulating pyrolysis and combustion behaviors of multilayer composites

聚氯乙烯 热解 材料科学 复合材料 复合数 燃烧 烧焦 化学工程 化学 有机化学 工程类
作者
Junhui Gong,Zhixuan Zhu,Chunjie Zhai
出处
期刊:Fuel [Elsevier]
卷期号:289: 119752-119752 被引量:15
标识
DOI:10.1016/j.fuel.2020.119752
摘要

A modified 1D numerical solver concerning the pyrolysis and combustion of a multilayer structure is reported in this study to better understand the unique thermal response of this composite. Complex pyrolysis reaction schemes, including multicomponent, parallel or consecutive or hybrid high order reactions, and thickness regression are considered in each layer. Predictive capability of the established model was first validated by comparison with experimental results of a three-layer PC(Polycarbonate, 1 mm)-PE(Polyethylene, 40 mm) foam-PC (1 mm) composite under 35, 40 and 50 kW/m2 heat fluxes. Despite some minor deviations, the numerical model successfully captured the shape, magnitude and locations of the two peaks of the measured MLR curves and surface temperatures. The evolutions of total thickness regression, in-depth temperature and density, normalized mass and MLR of each component in each layer were demonstrated. Subsequently, the extrapolation capability of the model was further verified by simulating the pyrolysis and combustion of a PVC(Polyvinyl chloride, 2 mm)-Kydex(polymethyl methacrylate-polyvinyl chloride alloy, 2 mm)-wood (20 mm) composite. Two reaction schemes of wood with different complexities were incorporated, and both pyrolysis and oxidation reactions were involved to identify their contributions. The results show oxidation reactions would significantly accelerate the decomposition and thickness regression processes. The total char yields of wood using the two pyrolysis reaction schemes are 31% and 17%, respectively. Oxidation of raw components in wood considerably impact the simulated thickness, density, surface and in-depth temperatures and total MLR. Furthermore, the contribution of each reaction to the total MLR is thoroughly examined.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hh应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
Eva完成签到,获得积分10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
清爽老九应助科研通管家采纳,获得20
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
greenPASS666发布了新的文献求助10
1秒前
涂欣桐应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
secbox完成签到,获得积分10
2秒前
刘哈哈发布了新的文献求助30
2秒前
xyzdmmm完成签到,获得积分10
3秒前
3秒前
欢呼冰岚发布了新的文献求助30
4秒前
xiongdi521发布了新的文献求助10
4秒前
honeybee完成签到,获得积分10
6秒前
兔子完成签到,获得积分10
7秒前
汉关发布了新的文献求助10
7秒前
NexusExplorer应助WZ0904采纳,获得10
8秒前
xiongdi521完成签到,获得积分10
9秒前
9秒前
ding应助奋斗的小林采纳,获得10
9秒前
超帅曼柔完成签到,获得积分10
9秒前
酷波er应助xg采纳,获得10
10秒前
听话的亦瑶完成签到,获得积分10
11秒前
龙江游侠完成签到,获得积分10
11秒前
小蘑菇应助honeybee采纳,获得10
12秒前
Agernon应助超帅曼柔采纳,获得10
12秒前
13秒前
jella完成签到,获得积分10
14秒前
一网小海蜇完成签到 ,获得积分10
14秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849