光电流
光催化
八面体
异质结
面(心理学)
材料科学
化学工程
纳米-
纳米技术
光电子学
化学
催化作用
结晶学
晶体结构
工程类
复合材料
人格
社会心理学
生物化学
心理学
五大性格特征
作者
Munawar Khalil,Fadlinatin Naumi,Uji Pratomo,Tribidasari A. Ivandini,Grandprix T.M. Kadja,Jacob Yan Mulyana
标识
DOI:10.1016/j.apsusc.2020.148746
摘要
This paper reports an investigation on the role of coexposed TiO2's (001) and (101) facets on the performance of TiO2/BiVO4 photoanodes in the photocatalytic fuel cell. Here, the exposure of these facets was obtained by synthesizing TiO2 with different morphologies, i.e. nanospindles, nanocube, nanooctahedra and nano-truncated octahedra. Based on the result, coexposed (001) and (101) facets were found to be responsible for the enhancement of photoelectrochemical response. The highest photocurrent density was achieved when the photoanode was fabricated using TiO2 nano-truncated octahedra/BiVO4 (29.8 μA/cm2 at 0.8 V vs. NHE), which was primarily due to the improvement of charge separation as a result of the synergistic effect between the formation of type-II heterojunction of TiO2/BiVO4 and internal surface heterojunction of (001) and (101) facet. A similar trend was also observed in the PFC system when RhB was used as fuel. Under the illumination of 13 W LED light, the highest electric power (0.00232 mW/cm2) was obtained with TiO2 nano-truncated octahedra/BiVO4 photoanode. However, TiO2 nanospindles/BiVO4 was found to be more effective in removing RhB due to its high surface area. Such variation was believed due to the fact that TiO2 nanospindles had less exposure of (001) facet than TiO2 nano-truncated octahedra.
科研通智能强力驱动
Strongly Powered by AbleSci AI