Regulating Surface Termination for Efficient Inverted Perovskite Solar Cells with Greater Than 23% Efficiency

化学 钝化 钙钛矿(结构) 能量转换效率 双功能 光伏系统 光电子学 化学物理 光化学 化学工程 结晶学 材料科学 图层(电子) 有机化学 催化作用 生物 工程类 生态学
作者
Fengzhu Li,Xiang Deng,Qi Feng,Zhen Li,Danjun Liu,Dong Shen,Minchao Qin,Shengfan Wu,Francis Lin,Sei‐Hum Jang,Jie Zhang,Xinhui Lu,Dangyuan Lei,Chun‐Sing Lee,Zonglong Zhu,Alex K.‐Y. Jen
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:142 (47): 20134-20142 被引量:592
标识
DOI:10.1021/jacs.0c09845
摘要

Passivating surface and bulk defects of perovskite films has been proven to be an effective way to minimize nonradiative recombination losses in perovskite solar cells (PVSCs). The lattice interference and perturbation of atomic periodicity at the perovskite surfaces often significantly affect the material properties and device efficiencies. By tailoring the terminal groups on the perovskite surface and modifying the surface chemical environment, the defects can be reduced to enhance the photovoltaic performance and stability of derived PVSCs. Here, we report a rationally designed bifunctional molecule, piperazinium iodide (PI), containing both R2NH and R2NH2+ groups on the same six-membered ring, behaving both as an electron donor and an electron acceptor to react with different surface-terminating ends on perovskite films. The resulting perovskite films after defect passivation show released surface residual stress, suppressed nonradiative recombination loss, and more n-type characteristics for sufficient energy transfer. Consequently, charge recombination is significantly suppressed to result in a high open-circuit voltage (VOC) of 1.17 V and a reduced VOC loss of 0.33 V. A very high power conversion efficiency (PCE) of 23.37% (with 22.75% certified) could be achieved, which is the highest value reported for inverted PVSCs. Our work reveals a very effective way of using rationally designed bifunctional molecules to simultaneously enhance the device performance and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zwj发布了新的文献求助10
刚刚
学海无涯完成签到,获得积分10
刚刚
robin_1217完成签到,获得积分10
刚刚
Leon Lai完成签到,获得积分0
刚刚
善学以致用应助Oasis采纳,获得10
刚刚
S先生完成签到,获得积分10
1秒前
顾矜应助qwer采纳,获得10
1秒前
科研之路完成签到,获得积分10
1秒前
铁臂阿童木完成签到,获得积分10
2秒前
2秒前
左耳钉应助春风细雨采纳,获得10
3秒前
Owen应助美少女战士采纳,获得10
3秒前
汉堡包应助LDoll采纳,获得30
5秒前
ACMI发布了新的文献求助10
5秒前
5秒前
5秒前
bingsu108完成签到,获得积分10
5秒前
大萝贝完成签到,获得积分10
5秒前
chem发布了新的文献求助10
6秒前
沙力VAN完成签到,获得积分10
6秒前
LWFFFF发布了新的文献求助10
6秒前
6秒前
usokb完成签到,获得积分10
7秒前
8秒前
情怀应助楠810217采纳,获得10
8秒前
科研通AI6应助ZsJJkk采纳,获得10
8秒前
今后应助Fngz3采纳,获得10
8秒前
鹿梦完成签到,获得积分10
8秒前
bodhi完成签到,获得积分10
9秒前
yaowei完成签到,获得积分10
10秒前
mia完成签到,获得积分10
10秒前
water完成签到,获得积分10
10秒前
华仔应助张1采纳,获得10
11秒前
372925abc完成签到,获得积分10
11秒前
艾小矽完成签到,获得积分10
11秒前
无奈访旋关注了科研通微信公众号
11秒前
WXY完成签到 ,获得积分10
11秒前
11秒前
xxfsx应助清欢采纳,获得10
11秒前
路十三发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5433116
求助须知:如何正确求助?哪些是违规求助? 4545620
关于积分的说明 14197160
捐赠科研通 4465227
什么是DOI,文献DOI怎么找? 2447494
邀请新用户注册赠送积分活动 1438664
关于科研通互助平台的介绍 1415645