Image Resolution Enhancement Technology Based on Deep Neural Network

计算机科学 人工智能 亚像素分辨率 计算机视觉 图像分辨率 图像处理 过程(计算) 数字图像处理 图像(数学) 操作系统
作者
Yu Peng
出处
期刊:Advances in intelligent systems and computing 卷期号:: 687-693
标识
DOI:10.1007/978-3-030-43306-2_97
摘要

Improving image quality is an important subject in the field of image processing. Images have a wide range of important uses in modern society, such as security surveillance, remote conferences, medical images, etc. Different from drawing-based graphics, it is often difficult to obtain images with sufficient accuracy due to the accuracy of the acquisition equipment. Especially in the field of video surveillance, because of the large amount of data storage, the limited bandwidth of the transmission link, and the limitations of the CCD manufacturing process and cost, it is often difficult to improve the resolution of the camera. The purpose of this paper is to study image resolution enhancement techniques based on deep neural networks. In this paper, in order to solve the problem of image resolution enhancement, the related theories and methods of super-resolution are studied. A processing framework for resolution enhancement is designed for real images. The effect of the resolution enhancement method is improved through process. Normalization method. Aiming at image resolution enhancement, a resolution enhancement method based on deep neural networks is proposed. Through the enhancement of various images, the visual effect of the experimental results is effectively improved. The research results show that image resolution enhancement processing can improve the spatial resolution of images under the same hardware conditions to a certain extent, improve image degradation and resolution degradation due to insufficient hardware conditions, and make up for the lack of image resolution to a certain extent to make the image clearer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林二木发布了新的文献求助10
刚刚
小马甲应助苯二氮卓采纳,获得10
刚刚
2秒前
小俞完成签到,获得积分10
3秒前
grisco完成签到,获得积分20
3秒前
宋晴也发布了新的文献求助10
3秒前
Jazzy发布了新的文献求助10
3秒前
好运加持发布了新的文献求助10
4秒前
啦啦啦哟完成签到,获得积分10
4秒前
墨晟蘅发布了新的文献求助10
4秒前
XxxxxxG发布了新的文献求助10
4秒前
称心映寒完成签到 ,获得积分10
4秒前
nn发布了新的文献求助10
5秒前
neko完成签到,获得积分10
5秒前
米粥饭完成签到,获得积分10
7秒前
乐道发布了新的文献求助10
7秒前
xyzhang完成签到,获得积分10
8秒前
研友_VZG7GZ应助new采纳,获得10
9秒前
9秒前
852应助neko采纳,获得10
9秒前
墨晟蘅完成签到,获得积分10
9秒前
9秒前
兴奋的果汁完成签到,获得积分10
10秒前
加油小李完成签到 ,获得积分10
10秒前
淡然鸡翅完成签到,获得积分10
11秒前
11秒前
ningning完成签到,获得积分20
12秒前
Orange应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
mhl11应助科研通管家采纳,获得10
12秒前
12秒前
Cassie应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
陌陌应助科研通管家采纳,获得10
13秒前
keKEYANTONG应助科研通管家采纳,获得10
13秒前
mhl11应助科研通管家采纳,获得10
13秒前
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
Ava应助科研通管家采纳,获得10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265978
求助须知:如何正确求助?哪些是违规求助? 2905826
关于积分的说明 8335519
捐赠科研通 2576203
什么是DOI,文献DOI怎么找? 1400372
科研通“疑难数据库(出版商)”最低求助积分说明 654755
邀请新用户注册赠送积分活动 633556