Image Resolution Enhancement Technology Based on Deep Neural Network

计算机科学 人工智能 亚像素分辨率 计算机视觉 图像分辨率 图像处理 过程(计算) 数字图像处理 图像(数学) 操作系统
作者
Yu Peng
出处
期刊:Advances in intelligent systems and computing 卷期号:: 687-693
标识
DOI:10.1007/978-3-030-43306-2_97
摘要

Improving image quality is an important subject in the field of image processing. Images have a wide range of important uses in modern society, such as security surveillance, remote conferences, medical images, etc. Different from drawing-based graphics, it is often difficult to obtain images with sufficient accuracy due to the accuracy of the acquisition equipment. Especially in the field of video surveillance, because of the large amount of data storage, the limited bandwidth of the transmission link, and the limitations of the CCD manufacturing process and cost, it is often difficult to improve the resolution of the camera. The purpose of this paper is to study image resolution enhancement techniques based on deep neural networks. In this paper, in order to solve the problem of image resolution enhancement, the related theories and methods of super-resolution are studied. A processing framework for resolution enhancement is designed for real images. The effect of the resolution enhancement method is improved through process. Normalization method. Aiming at image resolution enhancement, a resolution enhancement method based on deep neural networks is proposed. Through the enhancement of various images, the visual effect of the experimental results is effectively improved. The research results show that image resolution enhancement processing can improve the spatial resolution of images under the same hardware conditions to a certain extent, improve image degradation and resolution degradation due to insufficient hardware conditions, and make up for the lack of image resolution to a certain extent to make the image clearer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助高兴尔冬采纳,获得10
刚刚
善学以致用应助清秀诺言采纳,获得10
2秒前
崔崔发布了新的文献求助10
2秒前
duduguai完成签到,获得积分10
3秒前
在水一方应助Duffy采纳,获得10
3秒前
桐桐应助西子阳采纳,获得10
4秒前
充电宝应助ELLENZHAO采纳,获得30
5秒前
6秒前
Ming22关注了科研通微信公众号
7秒前
7秒前
9秒前
10秒前
田様应助结实的半双采纳,获得10
10秒前
今后应助泡泡糖采纳,获得10
10秒前
清秀诺言完成签到,获得积分10
14秒前
辣子鸡发布了新的文献求助10
15秒前
李健应助闪闪雁兰采纳,获得10
15秒前
yizhi猫发布了新的文献求助10
15秒前
踏雪飞鸿发布了新的文献求助10
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
yar应助科研通管家采纳,获得10
16秒前
花花应助科研通管家采纳,获得10
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
肉肉完成签到,获得积分10
16秒前
Liufgui应助科研通管家采纳,获得10
16秒前
大模型应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得40
17秒前
彭于晏应助科研通管家采纳,获得10
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
JamesPei应助科研通管家采纳,获得10
17秒前
17秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
yar应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
Owen应助科研通管家采纳,获得10
18秒前
Liufgui应助科研通管家采纳,获得10
18秒前
Liufgui应助科研通管家采纳,获得10
18秒前
田様应助科研通管家采纳,获得10
18秒前
yar应助科研通管家采纳,获得10
18秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998499
求助须知:如何正确求助?哪些是违规求助? 3538037
关于积分的说明 11273124
捐赠科研通 3277005
什么是DOI,文献DOI怎么找? 1807250
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810061