膜
分子筛
化学工程
碳化
材料科学
氢
氢气净化器
巴勒
热解
气体分离
碳纤维
渗透
无定形碳
制氢
无定形固体
有机化学
化学
吸附
生物化学
复合数
工程类
复合材料
作者
Ruisong Xu,He Liu,Lin Li,Mengjie Hou,Yongzhao Wang,Bingsen Zhang,Changhai Liang,Tonghua Wang
标识
DOI:10.1016/j.jechem.2020.03.008
摘要
Hydrogen is a green clean fuel and chemical feedstock. Its separation and purification from hydrogen-containing mixtures is the key step in the production of hydrogen with high purity (>99.99%). In this work, carbon molecular sieve (CMS) membranes with ultrahigh permselectivity for hydrogen purification were fabricated by high-temperature (700–900 °C) pyrolysis of polymeric precursor of phenolphthalein-based cardo poly(arylene ether ketone) (PEK-C). The evolution of the microstructural texture and ultramicroporous structure and gas separation performance of the CMS membrane were characterized via TG-MS, FT-IR, XRD, TEM, CO2 sorption analysis and gas permeation measurements. CMS membranes prepared at 700 °C exhibited amorphous turbostratic carbon structures and high H2 permeability of 5260 Barrer with H2/CH4, H2/N2 and H2/CO selectivities of 311, 142, 75, respectively. When carbonized at 900 °C, the CMS membrane with ultrahigh H2/CH4 selectivity of 1859 was derived owing to the formation of the dense and ordered carbon structure. CMS membranes with ultrahigh permselectivity exhibit an attractive application prospect in hydrogen purification.
科研通智能强力驱动
Strongly Powered by AbleSci AI