Effect of magnetic flux modulation on noise characteristics of tunnel magnetoresistive sensors

磁电阻 噪音(视频) 磁场 调制(音乐) 频率调制 凝聚态物理 磁通量 物理 材料科学 核磁共振 声学 电气工程 无线电频率 工程类 计算机科学 图像(数学) 人工智能 量子力学
作者
Qingfa Du,Jiafei Hu,Mengchun Pan,Dixiang Chen,Kun Sun,Long Pan,Yulu Che,Xinmiao Zhang,Peisen Li,Junsheng Zhang,Junping Peng,Weicheng Qiu,Qi Zhang,Minhui Ji
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:116 (10) 被引量:8
标识
DOI:10.1063/5.0002569
摘要

Magnetic flux modulation technology aims to shift the low frequency or dc magnetic field to a higher frequency band and avoid the influence of 1/f noise in a magnetoresistance sensor. Despite decades of development, there are relatively few studies devoted to the impact of this technology on the noise characteristic of a magnetoresistance sensor. In this paper, we fabricated a tunnel magnetoresistance sensor integrated with a magnetic flux modulation structure and explored the noise characteristics under modulation. It was found that the noise at the modulation frequency will increase significantly when the external magnetic field is large, and this is caused by the ac magnetic field after modulation. The maximum value of noise at the modulation frequency is up to 12 μV/√Hz under modulation, which is 63 times higher than that without modulation. Obviously, this result indicates that magnetic flux modulation technology may be ineffective in reducing 1/f noise. Fortunately, it was also observed that when the external magnetic field is small, the noise increase is not obvious. Based on this, we proposed a magnetic field tracking compensation method to keep the measured magnetic field constantly close to zero and prevent the deterioration of noise, no matter how the external magnetic field changes. A compensating coil was designed and manufactured to generate the compensating magnetic field. The test results show that the increase in noise under modulation can be well suppressed with magnetic field tracking compensation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
iNk应助诚心八宝粥采纳,获得10
刚刚
miles完成签到,获得积分10
刚刚
悲惨的时光完成签到 ,获得积分10
1秒前
1秒前
1秒前
2秒前
hugeng发布了新的文献求助10
2秒前
VDC应助都是采纳,获得30
2秒前
大模型应助出门右转采纳,获得10
2秒前
温暖的数据线完成签到,获得积分10
2秒前
低调发布了新的文献求助10
3秒前
shane发布了新的文献求助30
3秒前
4秒前
4秒前
5秒前
疯子静儿完成签到,获得积分10
5秒前
lxl发布了新的文献求助30
5秒前
shred发布了新的文献求助10
6秒前
wildtypeho发布了新的文献求助10
6秒前
lwqz_2022完成签到 ,获得积分10
6秒前
Meng发布了新的文献求助10
6秒前
开心易真完成签到,获得积分10
6秒前
6秒前
6秒前
科目三应助辣辣采纳,获得10
6秒前
shanyuee发布了新的文献求助20
6秒前
LS完成签到,获得积分10
7秒前
7秒前
ZYL123发布了新的文献求助10
7秒前
jade828发布了新的文献求助30
7秒前
Hello应助文xue采纳,获得10
7秒前
ss完成签到,获得积分10
7秒前
风语村完成签到,获得积分10
7秒前
休思发布了新的文献求助10
8秒前
彭于彦祖应助科研通管家采纳,获得30
8秒前
8秒前
田様应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
8秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469183
求助须知:如何正确求助?哪些是违规求助? 3062194
关于积分的说明 9078285
捐赠科研通 2752576
什么是DOI,文献DOI怎么找? 1510487
科研通“疑难数据库(出版商)”最低求助积分说明 697899
邀请新用户注册赠送积分活动 697783