On Semi-Analytical Solutions for Linearized Dispersive KdV Equations

Korteweg–de Vries方程 阿多米安分解法 拉普拉斯变换 数学 离散化 非线性系统 数学分析 同伦分析法 拉普拉斯变换在微分方程中的应用 线性化 应用数学 同伦 偏微分方程 物理 量子力学 纯数学
作者
Appanah Rao Appadu,Abey Sherif Kelil
出处
期刊:Mathematics [MDPI AG]
卷期号:8 (10): 1769-1769 被引量:17
标识
DOI:10.3390/math8101769
摘要

The most well-known equations both in the theory of nonlinearity and dispersion, KdV equations, have received tremendous attention over the years and have been used as model equations for the advancement of the theory of solitons. In this paper, some semi-analytic methods are applied to solve linearized dispersive KdV equations with homogeneous and inhomogeneous source terms. These methods are the Laplace-Adomian decomposition method (LADM), Homotopy perturbation method (HPM), Bernstein-Laplace-Adomian Method (BALDM), and Reduced Differential Transform Method (RDTM). Three numerical experiments are considered. As the main contribution, we proposed a new scheme, known as BALDM, which involves Bernstein polynomials, Laplace transform and Adomian decomposition method to solve inhomogeneous linearized dispersive KdV equations. Besides, some modifications of HPM are also considered to solve certain inhomogeneous KdV equations by first constructing a newly modified homotopy on the source term and secondly by modifying Laplace’s transform with HPM to build HPTM. Both modifications of HPM numerically confirm the efficiency and validity of the methods for some test problems of dispersive KdV-like equations. We also applied LADM and RDTM to both homogeneous as well as inhomogeneous KdV equations to compare the obtained results and extended to higher dimensions. As a result, RDTM is applied to a 3D-dispersive KdV equation. The proposed iterative schemes determined the approximate solution without any discretization, linearization, or restrictive assumptions. The performance of the four methods is gauged over short and long propagation times and we compute absolute and relative errors at a given time for some spatial nodes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助安详葶采纳,获得10
刚刚
英俊的铭应助巧克力曲奇采纳,获得10
刚刚
orixero应助wsqg123采纳,获得10
刚刚
方向完成签到,获得积分10
1秒前
1秒前
英姑应助霍师傅采纳,获得30
1秒前
lmy9988发布了新的文献求助10
1秒前
微瑕发布了新的文献求助10
2秒前
PG发布了新的文献求助10
3秒前
Dale发布了新的文献求助10
3秒前
追寻归尘发布了新的文献求助10
3秒前
方向发布了新的文献求助10
3秒前
4秒前
rebome驳回了yznfly应助
4秒前
tojobbb完成签到,获得积分10
4秒前
Boston发布了新的文献求助10
4秒前
黄浩文发布了新的文献求助10
4秒前
123发布了新的文献求助10
5秒前
5秒前
tcf应助时光代理人采纳,获得10
5秒前
沐易完成签到,获得积分10
5秒前
ranan发布了新的文献求助10
5秒前
张璐发布了新的文献求助10
5秒前
FBI发布了新的文献求助10
5秒前
少锋x完成签到,获得积分10
6秒前
Jiang发布了新的文献求助10
7秒前
7秒前
8秒前
科研通AI6应助的的的墨采纳,获得10
8秒前
9秒前
10秒前
10秒前
Akim应助美满烤鸡采纳,获得10
10秒前
思源应助wushangyu采纳,获得10
10秒前
10秒前
飞翔的小土豆完成签到,获得积分10
11秒前
11秒前
11秒前
科研通AI6应助凌爽采纳,获得10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609726
求助须知:如何正确求助?哪些是违规求助? 4694294
关于积分的说明 14881987
捐赠科研通 4720227
什么是DOI,文献DOI怎么找? 2544836
邀请新用户注册赠送积分活动 1509735
关于科研通互助平台的介绍 1472996