On Semi-Analytical Solutions for Linearized Dispersive KdV Equations

Korteweg–de Vries方程 阿多米安分解法 拉普拉斯变换 数学 离散化 非线性系统 数学分析 同伦分析法 拉普拉斯变换在微分方程中的应用 线性化 应用数学 同伦 偏微分方程 物理 量子力学 纯数学
作者
Appanah Rao Appadu,Abey Sherif Kelil
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:8 (10): 1769-1769 被引量:17
标识
DOI:10.3390/math8101769
摘要

The most well-known equations both in the theory of nonlinearity and dispersion, KdV equations, have received tremendous attention over the years and have been used as model equations for the advancement of the theory of solitons. In this paper, some semi-analytic methods are applied to solve linearized dispersive KdV equations with homogeneous and inhomogeneous source terms. These methods are the Laplace-Adomian decomposition method (LADM), Homotopy perturbation method (HPM), Bernstein-Laplace-Adomian Method (BALDM), and Reduced Differential Transform Method (RDTM). Three numerical experiments are considered. As the main contribution, we proposed a new scheme, known as BALDM, which involves Bernstein polynomials, Laplace transform and Adomian decomposition method to solve inhomogeneous linearized dispersive KdV equations. Besides, some modifications of HPM are also considered to solve certain inhomogeneous KdV equations by first constructing a newly modified homotopy on the source term and secondly by modifying Laplace’s transform with HPM to build HPTM. Both modifications of HPM numerically confirm the efficiency and validity of the methods for some test problems of dispersive KdV-like equations. We also applied LADM and RDTM to both homogeneous as well as inhomogeneous KdV equations to compare the obtained results and extended to higher dimensions. As a result, RDTM is applied to a 3D-dispersive KdV equation. The proposed iterative schemes determined the approximate solution without any discretization, linearization, or restrictive assumptions. The performance of the four methods is gauged over short and long propagation times and we compute absolute and relative errors at a given time for some spatial nodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
2秒前
核桃应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
nan完成签到,获得积分10
2秒前
核桃应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得30
3秒前
科研通AI6应助科研通管家采纳,获得30
3秒前
Akim应助科研通管家采纳,获得10
3秒前
3秒前
核桃应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5143116
求助须知:如何正确求助?哪些是违规求助? 4341139
关于积分的说明 13519750
捐赠科研通 4181415
什么是DOI,文献DOI怎么找? 2292915
邀请新用户注册赠送积分活动 1293554
关于科研通互助平台的介绍 1236153