On Semi-Analytical Solutions for Linearized Dispersive KdV Equations

Korteweg–de Vries方程 阿多米安分解法 拉普拉斯变换 数学 离散化 非线性系统 数学分析 同伦分析法 拉普拉斯变换在微分方程中的应用 线性化 应用数学 同伦 偏微分方程 物理 量子力学 纯数学
作者
Appanah Rao Appadu,Abey Sherif Kelil
出处
期刊:Mathematics [MDPI AG]
卷期号:8 (10): 1769-1769 被引量:17
标识
DOI:10.3390/math8101769
摘要

The most well-known equations both in the theory of nonlinearity and dispersion, KdV equations, have received tremendous attention over the years and have been used as model equations for the advancement of the theory of solitons. In this paper, some semi-analytic methods are applied to solve linearized dispersive KdV equations with homogeneous and inhomogeneous source terms. These methods are the Laplace-Adomian decomposition method (LADM), Homotopy perturbation method (HPM), Bernstein-Laplace-Adomian Method (BALDM), and Reduced Differential Transform Method (RDTM). Three numerical experiments are considered. As the main contribution, we proposed a new scheme, known as BALDM, which involves Bernstein polynomials, Laplace transform and Adomian decomposition method to solve inhomogeneous linearized dispersive KdV equations. Besides, some modifications of HPM are also considered to solve certain inhomogeneous KdV equations by first constructing a newly modified homotopy on the source term and secondly by modifying Laplace’s transform with HPM to build HPTM. Both modifications of HPM numerically confirm the efficiency and validity of the methods for some test problems of dispersive KdV-like equations. We also applied LADM and RDTM to both homogeneous as well as inhomogeneous KdV equations to compare the obtained results and extended to higher dimensions. As a result, RDTM is applied to a 3D-dispersive KdV equation. The proposed iterative schemes determined the approximate solution without any discretization, linearization, or restrictive assumptions. The performance of the four methods is gauged over short and long propagation times and we compute absolute and relative errors at a given time for some spatial nodes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hustlers发布了新的文献求助10
刚刚
fengxi发布了新的文献求助10
1秒前
郁盈完成签到,获得积分10
1秒前
老迟到的越泽完成签到,获得积分10
1秒前
2秒前
华仔应助Kane采纳,获得10
3秒前
科研通AI2S应助FYhan采纳,获得10
3秒前
3秒前
暮夏七完成签到,获得积分10
4秒前
5秒前
5秒前
7秒前
领导范儿应助hahhh7采纳,获得10
8秒前
搜集达人应助chen有理采纳,获得10
8秒前
8秒前
大雯子发布了新的文献求助20
9秒前
10秒前
yyy发布了新的文献求助10
11秒前
12秒前
12秒前
可爱的函函应助祈愿采纳,获得10
13秒前
搜集达人应助Ting222采纳,获得10
13秒前
14秒前
纯真紫南发布了新的文献求助10
14秒前
巨人的背影完成签到,获得积分10
14秒前
王九八发布了新的文献求助10
15秒前
科研打工人完成签到 ,获得积分10
16秒前
13完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
完美丹亦完成签到 ,获得积分10
19秒前
NexusExplorer应助专注的夜蓉采纳,获得10
19秒前
ding应助天天向上采纳,获得10
19秒前
21秒前
逍遥完成签到,获得积分10
21秒前
chen有理发布了新的文献求助10
22秒前
阿北发布了新的文献求助10
22秒前
23秒前
辛勤长颈鹿完成签到 ,获得积分10
23秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260332
求助须知:如何正确求助?哪些是违规求助? 2901546
关于积分的说明 8316014
捐赠科研通 2571113
什么是DOI,文献DOI怎么找? 1396847
科研通“疑难数据库(出版商)”最低求助积分说明 653584
邀请新用户注册赠送积分活动 631997