Factors affecting the acceptance of blended learning in medical education: application of UTAUT2 model

混合学习 技术接受与使用的统一理论 结构方程建模 心理学 习惯 医学教育 计算机科学 数学教育 教育技术 社会影响力 社会心理学 医学 机器学习
作者
Seyyed Mohsen Azizi,Nasrin Roozbahani,Alireza Khatony
出处
期刊:BMC Medical Education [Springer Nature]
卷期号:20 (1) 被引量:93
标识
DOI:10.1186/s12909-020-02302-2
摘要

Abstract Background Blended learning is a new approach to improving the quality of medical education. Acceptance of blended learning plays an important role in its effective implementation. Therefore, the purpose of this study was to investigate and determine the factors that might affect students’ intention to use blended learning. Methods In this cross-sectional, correlational study, the sample consisted of 225 Iranian medical sciences students. The theoretical framework for designing the conceptual model was the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2). Venkatesh et al. (2012) proposed UTAUT2 as a framework to explain a person’s behavior while using technology. Data were analyzed using SPSS-18 and AMOS-23 software. Structural equation modeling technique was used to test the hypotheses. Results The validity and reliability of the model constructs were acceptable. Performance Expectance (PE), Effort Expectance (EE), Social Influence (SI), Facilitating Conditions (FC), Hedonic Motivation (HM), Price Value (PV) and Habit (HT) had a significant effect on the students’ behavioral intention to use blended learning. Additionally, behavioral intention to use blended learning had a significant effect on the students’ actual use of blended learning (β = 0.645, P ≤ 0.01). Conclusion The study revealed that the proposed framework based on the UTAUT2 had good potential to identify the factors influencing the students’ behavioral intention to use blended learning. Universities can use the results of this study to design and implement successful blended learning courses in medical education.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ll完成签到,获得积分10
1秒前
1秒前
谨慎盼山完成签到,获得积分10
1秒前
1秒前
汉堡包应助天熙采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
橙子发布了新的文献求助10
5秒前
AFF发布了新的文献求助10
5秒前
烟花应助yellow采纳,获得10
6秒前
7秒前
深情安青应助无尽的派采纳,获得10
8秒前
笨笨完成签到,获得积分10
8秒前
9秒前
9秒前
Owen应助byb采纳,获得10
10秒前
10秒前
杨小花发布了新的文献求助10
11秒前
CodeCraft应助九千七采纳,获得10
11秒前
赘婿应助彭a采纳,获得10
12秒前
科目三应助Ll采纳,获得10
13秒前
13秒前
英姑应助植保匠人采纳,获得10
14秒前
wangnn发布了新的文献求助10
15秒前
15秒前
现代的绿真完成签到,获得积分20
15秒前
上官若男应助鲤鱼问雁采纳,获得10
15秒前
抓到你啦发布了新的文献求助10
16秒前
16秒前
hs完成签到,获得积分10
16秒前
16秒前
山石完成签到,获得积分10
17秒前
17秒前
18秒前
麦满分完成签到,获得积分10
19秒前
tga完成签到,获得积分10
19秒前
yellow发布了新的文献求助10
20秒前
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312684
求助须知:如何正确求助?哪些是违规求助? 2945170
关于积分的说明 8523532
捐赠科研通 2620981
什么是DOI,文献DOI怎么找? 1433226
科研通“疑难数据库(出版商)”最低求助积分说明 664923
邀请新用户注册赠送积分活动 650255