High-quality photoacoustic image reconstruction based on deep convolutional neural network: towards intra-operative photoacoustic imaging

计算机科学 生物医学中的光声成像 卷积神经网络 图像质量 人工智能 数据集 峰值信噪比 深度学习 人工神经网络 相似性(几何) 计算机视觉 模式识别(心理学) 图像(数学) 光学 物理
作者
Parastoo Farnia,Mohammad Mohammadi,Ebrahim Najafzadeh,Maysam Alimohamadi,Bahador Makkiabadi,Alireza Ahmadian
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:6 (4): 045019-045019 被引量:26
标识
DOI:10.1088/2057-1976/ab9a10
摘要

The use of intra-operative imaging system as an intervention solution to provide more accurate localization of complicated structures has become a necessity during the neurosurgery. However, due to the limitations of conventional imaging systems, high-quality real-time intra-operative imaging remains as a challenging problem. Meanwhile, photoacoustic imaging has appeared so promising to provide images of crucial structures such as blood vessels and microvasculature of tumors. To achieve high-quality photoacoustic images of vessels regarding the artifacts caused by the incomplete data, we proposed an approach based on the combination of time-reversal (TR) and deep learning methods. The proposed method applies a TR method in the first layer of the network which is followed by the convolutional neural network with weights adjusted to a set of simulated training data for the other layers to estimate artifact-free photoacoustic images. It was evaluated using a generated synthetic database of vessels. The mean of signal to noise ratio (SNR), peak SNR, structural similarity index, and edge preservation index for the test data were reached 14.6 dB, 35.3 dB, 0.97 and 0.90, respectively. As our results proved, by using the lower number of detectors and consequently the lower data acquisition time, our approach outperforms the TR algorithm in all criteria in a computational time compatible with clinical use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
甜美百褶裙完成签到,获得积分10
2秒前
3秒前
3秒前
隐形芹完成签到,获得积分10
4秒前
4秒前
4秒前
Joye完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
光亮可愁发布了新的文献求助10
7秒前
8秒前
自信夜春发布了新的文献求助10
8秒前
8秒前
Hh发布了新的文献求助10
8秒前
隐形曼青应助ccalvintan采纳,获得10
9秒前
淡然的宛秋完成签到,获得积分10
10秒前
yuchen完成签到,获得积分10
10秒前
如意歌曲发布了新的文献求助50
10秒前
11秒前
11秒前
斯文冷亦完成签到 ,获得积分10
12秒前
李友健完成签到 ,获得积分10
12秒前
XYY发布了新的文献求助10
12秒前
13秒前
zcydbttj2011完成签到 ,获得积分10
13秒前
自觉的傥完成签到,获得积分10
16秒前
小垃圾发布了新的文献求助10
16秒前
田様应助阿冰采纳,获得10
16秒前
Muller完成签到,获得积分10
16秒前
bb完成签到,获得积分10
17秒前
谦让的凡松完成签到,获得积分10
17秒前
18秒前
杨志坚完成签到 ,获得积分10
18秒前
XYY完成签到,获得积分10
21秒前
充电宝应助如意歌曲采纳,获得10
21秒前
周凡淇发布了新的文献求助10
23秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162823
求助须知:如何正确求助?哪些是违规求助? 2813772
关于积分的说明 7902010
捐赠科研通 2473391
什么是DOI,文献DOI怎么找? 1316837
科研通“疑难数据库(出版商)”最低求助积分说明 631536
版权声明 602187