High-quality photoacoustic image reconstruction based on deep convolutional neural network: towards intra-operative photoacoustic imaging

计算机科学 生物医学中的光声成像 卷积神经网络 图像质量 人工智能 数据集 峰值信噪比 深度学习 人工神经网络 相似性(几何) 计算机视觉 模式识别(心理学) 图像(数学) 光学 物理
作者
Parastoo Farnia,Mohammad Mohammadi,Ebrahim Najafzadeh,Maysam Alimohamadi,Bahador Makkiabadi,Alireza Ahmadian
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:6 (4): 045019-045019 被引量:34
标识
DOI:10.1088/2057-1976/ab9a10
摘要

The use of intra-operative imaging system as an intervention solution to provide more accurate localization of complicated structures has become a necessity during the neurosurgery. However, due to the limitations of conventional imaging systems, high-quality real-time intra-operative imaging remains as a challenging problem. Meanwhile, photoacoustic imaging has appeared so promising to provide images of crucial structures such as blood vessels and microvasculature of tumors. To achieve high-quality photoacoustic images of vessels regarding the artifacts caused by the incomplete data, we proposed an approach based on the combination of time-reversal (TR) and deep learning methods. The proposed method applies a TR method in the first layer of the network which is followed by the convolutional neural network with weights adjusted to a set of simulated training data for the other layers to estimate artifact-free photoacoustic images. It was evaluated using a generated synthetic database of vessels. The mean of signal to noise ratio (SNR), peak SNR, structural similarity index, and edge preservation index for the test data were reached 14.6 dB, 35.3 dB, 0.97 and 0.90, respectively. As our results proved, by using the lower number of detectors and consequently the lower data acquisition time, our approach outperforms the TR algorithm in all criteria in a computational time compatible with clinical use.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
奔跑的鱼发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
英姑应助激情的不弱采纳,获得10
1秒前
1秒前
Siriluck完成签到 ,获得积分10
2秒前
wzx发布了新的文献求助10
2秒前
2秒前
Anna发布了新的文献求助20
3秒前
3秒前
Wayne完成签到,获得积分10
3秒前
JamesPei应助周学采纳,获得10
4秒前
缓慢谷雪完成签到,获得积分10
4秒前
mieyy完成签到,获得积分10
4秒前
壮观的灵凡完成签到,获得积分10
4秒前
4秒前
虚心焦完成签到 ,获得积分10
5秒前
云墨发布了新的文献求助10
5秒前
果粒橙完成签到 ,获得积分10
5秒前
李佳轩发布了新的文献求助10
5秒前
科研通AI6应助愤怒的故事采纳,获得10
6秒前
6秒前
小张发布了新的文献求助10
6秒前
科研通AI6应助yu采纳,获得10
6秒前
奔跑的鱼完成签到,获得积分10
7秒前
充电宝应助星河梦枕采纳,获得10
7秒前
7秒前
feng发布了新的文献求助10
8秒前
林小幸完成签到,获得积分10
8秒前
8秒前
123发布了新的文献求助10
8秒前
馬克完成签到,获得积分10
9秒前
10秒前
海星完成签到,获得积分10
10秒前
11秒前
大模型应助健壮的冰岚采纳,获得10
11秒前
11秒前
11秒前
科研喜剧人完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546153
求助须知:如何正确求助?哪些是违规求助? 4631960
关于积分的说明 14624094
捐赠科研通 4573677
什么是DOI,文献DOI怎么找? 2507699
邀请新用户注册赠送积分活动 1484361
关于科研通互助平台的介绍 1455656