High-quality photoacoustic image reconstruction based on deep convolutional neural network: towards intra-operative photoacoustic imaging

计算机科学 生物医学中的光声成像 卷积神经网络 图像质量 人工智能 数据集 峰值信噪比 深度学习 人工神经网络 相似性(几何) 计算机视觉 模式识别(心理学) 图像(数学) 光学 物理
作者
Parastoo Farnia,Mohammad Mohammadi,Ebrahim Najafzadeh,Maysam Alimohamadi,Bahador Makkiabadi,Alireza Ahmadian
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:6 (4): 045019-045019 被引量:34
标识
DOI:10.1088/2057-1976/ab9a10
摘要

The use of intra-operative imaging system as an intervention solution to provide more accurate localization of complicated structures has become a necessity during the neurosurgery. However, due to the limitations of conventional imaging systems, high-quality real-time intra-operative imaging remains as a challenging problem. Meanwhile, photoacoustic imaging has appeared so promising to provide images of crucial structures such as blood vessels and microvasculature of tumors. To achieve high-quality photoacoustic images of vessels regarding the artifacts caused by the incomplete data, we proposed an approach based on the combination of time-reversal (TR) and deep learning methods. The proposed method applies a TR method in the first layer of the network which is followed by the convolutional neural network with weights adjusted to a set of simulated training data for the other layers to estimate artifact-free photoacoustic images. It was evaluated using a generated synthetic database of vessels. The mean of signal to noise ratio (SNR), peak SNR, structural similarity index, and edge preservation index for the test data were reached 14.6 dB, 35.3 dB, 0.97 and 0.90, respectively. As our results proved, by using the lower number of detectors and consequently the lower data acquisition time, our approach outperforms the TR algorithm in all criteria in a computational time compatible with clinical use.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助yy采纳,获得10
1秒前
haiqin28发布了新的文献求助10
1秒前
1秒前
1秒前
huan发布了新的文献求助10
1秒前
安琦发布了新的文献求助10
2秒前
ding应助Jenny采纳,获得10
2秒前
3秒前
Yang完成签到,获得积分10
3秒前
3秒前
飘落的樱花完成签到,获得积分10
3秒前
liliwang发布了新的文献求助20
3秒前
4秒前
小二郎应助LXdjlx采纳,获得10
4秒前
yys发布了新的文献求助10
5秒前
一颗橙子CCC完成签到,获得积分10
5秒前
慕青应助宋依依采纳,获得10
5秒前
5秒前
6秒前
7秒前
小马甲应助六尺巷采纳,获得10
7秒前
7秒前
9秒前
9秒前
6w6发布了新的文献求助10
10秒前
大个应助朴实的南露采纳,获得10
10秒前
悦耳冰蓝发布了新的文献求助10
10秒前
ocean发布了新的文献求助20
11秒前
11秒前
和谐煎饼完成签到,获得积分20
12秒前
12秒前
13秒前
13秒前
桐桐应助MT采纳,获得10
14秒前
酷波er应助MT采纳,获得10
14秒前
充电宝应助MT采纳,获得10
14秒前
ding应助MT采纳,获得10
14秒前
LXdjlx发布了新的文献求助10
14秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637437
求助须知:如何正确求助?哪些是违规求助? 4743337
关于积分的说明 14999087
捐赠科研通 4795612
什么是DOI,文献DOI怎么找? 2562091
邀请新用户注册赠送积分活动 1521554
关于科研通互助平台的介绍 1481559