A Joint 3D UNet-Graph Neural Network-Based Method for Airway Segmentation from Chest CTs

计算机科学 邻接矩阵 图形 邻接表 模式识别(心理学) 分割 人工智能 特征向量 理论计算机科学 算法
作者
Antonio García-Uceda Juárez,Raghavendra Selvan,Zaigham Saghir,Marleen de Bruijne
出处
期刊:Lecture Notes in Computer Science 卷期号:: 583-591 被引量:47
标识
DOI:10.1007/978-3-030-32692-0_67
摘要

We present an end-to-end deep learning segmentation method by combining a 3D UNet architecture with a graph neural network (GNN) model. In this approach, the convolutional layers at the deepest level of the UNet are replaced by a GNN-based module with a series of graph convolutions. The dense feature maps at this level are transformed into a graph input to the GNN module. The incorporation of graph convolutions in the UNet provides nodes in the graph with information that is based on node connectivity, in addition to the local features learnt through the downsampled paths. This information can help improve segmentation decisions. By stacking several graph convolution layers, the nodes can access higher order neighbourhood information without substantial increase in computational expense. We propose two types of node connectivity in the graph adjacency: (i) one predefined and based on a regular node neighbourhood, and (ii) one dynamically computed during training and using the nearest neighbour nodes in the feature space. We have applied this method to the task of segmenting the airway tree from chest CT scans. Experiments have been performed on 32 CTs from the Danish Lung Cancer Screening Trial dataset. We evaluate the performance of the UNet-GNN models with two types of graph adjacency and compare it with the baseline UNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不将就完成签到,获得积分10
刚刚
刚刚
2秒前
jerry完成签到,获得积分10
2秒前
2秒前
木木发布了新的文献求助10
3秒前
3秒前
jubikbubik发布了新的文献求助10
3秒前
4秒前
zyx完成签到,获得积分10
5秒前
雷雷完成签到,获得积分10
5秒前
5秒前
小二郎应助付一鸣采纳,获得10
5秒前
fyfhjff发布了新的文献求助10
5秒前
朱事顺利完成签到,获得积分10
6秒前
渣渣辉啦发布了新的文献求助20
6秒前
冷静惜文发布了新的文献求助10
6秒前
Aurora完成签到,获得积分20
7秒前
changhao6787发布了新的文献求助10
7秒前
8秒前
十一发布了新的文献求助10
8秒前
田様应助遇见采纳,获得10
9秒前
huang完成签到 ,获得积分10
9秒前
共享精神应助21采纳,获得10
9秒前
顾矜应助木木采纳,获得10
9秒前
快乐的向卉完成签到,获得积分10
10秒前
Aurora发布了新的文献求助10
10秒前
11秒前
IvanLIu发布了新的文献求助20
11秒前
领导范儿应助persist采纳,获得10
11秒前
付一鸣完成签到,获得积分10
12秒前
老实蝴蝶发布了新的文献求助20
13秒前
所所应助wwwsmile采纳,获得10
13秒前
彭于彦祖应助MalowZhang采纳,获得20
13秒前
慕青应助hhchhcmxhf采纳,获得10
13秒前
13秒前
科研通AI5应助huang采纳,获得10
14秒前
Chance发布了新的文献求助10
14秒前
14秒前
14秒前
高分求助中
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Where and how to use plate heat exchangers 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
The Enzymes,Tyrosinase Volume 56 200
Cardiac arrhythmia classification of imbalanced data using convolutional autoencoder and LSTM techniques 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3702622
求助须知:如何正确求助?哪些是违规求助? 3252430
关于积分的说明 9879649
捐赠科研通 2964498
什么是DOI,文献DOI怎么找? 1625719
邀请新用户注册赠送积分活动 770222
科研通“疑难数据库(出版商)”最低求助积分说明 742888