亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluating Auto-Vectorizing Compilers through Objective Withdrawal of Useful Information

编译程序 计算机科学 矢量化(数学) 并行计算 编译时间 程序设计语言 优化编译器
作者
Sergi Siso,Wes Armour,Jeyarajan Thiyagalingam
出处
期刊:ACM Transactions on Architecture and Code Optimization [Association for Computing Machinery]
卷期号:16 (4): 1-23 被引量:3
标识
DOI:10.1145/3356842
摘要

The need for compilers to generate highly vectorized code is at an all-time high with the increasing vectorization capabilities of modern processors. To this end, the information that compilers have at their disposal, either through code analysis or via user annotations, is instrumental for auto-vectorization, and hence for the overall performance. However, the information that is available to compilers at compile time and its accuracy varies greatly, as does the resulting performance of vectorizing compilers. Benchmarks like the Test Suite for Vectorizing Compilers (TSVC) have been developed to evaluate the vectorization capability of such compilers. The overarching approach of TSVC and similar benchmarks is to evaluate the compilers under the best possible scenario (i.e., assuming that compilers have access to all useful contextual information at compile time). Although this idealistic view is useful to observe the capability of compilers for auto-vectorization, it is not a true reflection of the conditions found in real-world applications. In this article, we propose a novel method for evaluating the auto-vectorization capability of compilers. Instead of assuming that compilers have access to a wealth of information at compile time, we formulate a method to objectively supply or withdraw information that would otherwise aid the compiler in the auto-vectorization process. This method is orthogonal to the approach adopted by TSVC, and as such, it provides the means of assessing the capabilities of modern vectorizing compilers in a more detailed way. Using this new method, we exhaustively evaluated five industry-grade compilers (GNU, Intel, Clang, PGI, and IBM) on four representative vector platforms (AVX-2, AVX-512 (Skylake), AVX-512 (KNL), and AltiVec) using the modified version of TSVC and application-level proxy kernels. The results show the impact that withdrawing information has on the vectorization capabilities of each compiler and also prove the validity of the presented technique.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Andy_2024完成签到,获得积分10
18秒前
成就的孤晴完成签到 ,获得积分10
24秒前
垚祎完成签到 ,获得积分10
27秒前
32秒前
传奇3应助科研通管家采纳,获得10
39秒前
48秒前
1分钟前
yaoyao发布了新的文献求助10
1分钟前
1分钟前
Jack80发布了新的文献求助50
1分钟前
科研王者发布了新的文献求助10
1分钟前
1分钟前
2分钟前
zxr123关注了科研通微信公众号
2分钟前
2分钟前
2分钟前
Chenzr发布了新的文献求助10
2分钟前
Lsh173373完成签到,获得积分10
2分钟前
搜集达人应助Jack80采纳,获得50
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
zxr123发布了新的文献求助10
2分钟前
2分钟前
舒心的晟睿完成签到,获得积分10
2分钟前
2分钟前
Jack80发布了新的文献求助50
3分钟前
豆包完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
阿智发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
隐形曼青应助西瓜撞地球采纳,获得10
4分钟前
4分钟前
4分钟前
dilli完成签到 ,获得积分10
4分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234555
求助须知:如何正确求助?哪些是违规求助? 2880908
关于积分的说明 8217319
捐赠科研通 2548507
什么是DOI,文献DOI怎么找? 1377792
科研通“疑难数据库(出版商)”最低求助积分说明 647999
邀请新用户注册赠送积分活动 623347