Region Attention Networks for Pose and Occlusion Robust Facial Expression Recognition

闭塞 人工智能 卷积神经网络 计算机科学 面部表情 面部表情识别 模式识别(心理学) 稳健性(进化) 计算机视觉 面部识别系统 生物化学 医学 化学 心脏病学 基因
作者
Kai Wang,Xiaojiang Peng,Jianfei Yang,Debin Meng,Yu Qiao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 4057-4069 被引量:828
标识
DOI:10.1109/tip.2019.2956143
摘要

Occlusion and pose variations, which can change facial appearance significantly, are two major obstacles for automatic Facial Expression Recognition (FER). Though automatic FER has made substantial progresses in the past few decades, occlusion-robust and pose-invariant issues of FER have received relatively less attention, especially in real-world scenarios. This paper addresses the real-world pose and occlusion robust FER problem in the following aspects. First, to stimulate the research of FER under real-world occlusions and variant poses, we annotate several in-the-wild FER datasets with pose and occlusion attributes for the community. Second, we propose a novel Region Attention Network (RAN), to adaptively capture the importance of facial regions for occlusion and pose variant FER. The RAN aggregates and embeds varied number of region features produced by a backbone convolutional neural network into a compact fixed-length representation. Last, inspired by the fact that facial expressions are mainly defined by facial action units, we propose a region biased loss to encourage high attention weights for the most important regions. We validate our RAN and region biased loss on both our built test datasets and four popular datasets: FERPlus, AffectNet, RAF-DB, and SFEW. Extensive experiments show that our RAN and region biased loss largely improve the performance of FER with occlusion and variant pose. Our method also achieves state-of-the-art results on FERPlus, AffectNet, RAF-DB, and SFEW. Code and the collected test data will be publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
举个栗子8完成签到,获得积分10
刚刚
666y完成签到,获得积分10
刚刚
1秒前
大香蕉发布了新的文献求助10
1秒前
尊敬凝荷完成签到,获得积分10
1秒前
einspringen发布了新的文献求助10
1秒前
youknowdcf发布了新的文献求助10
2秒前
小蜻蜓完成签到,获得积分10
2秒前
粗心的忆山完成签到 ,获得积分10
2秒前
00发布了新的文献求助10
2秒前
薯条派完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
常裤子完成签到,获得积分10
3秒前
神勇友灵完成签到,获得积分0
3秒前
Zhijiuz完成签到,获得积分10
4秒前
留白完成签到 ,获得积分10
4秒前
winwin完成签到,获得积分10
4秒前
呀呀呀完成签到,获得积分10
4秒前
大肉猪完成签到,获得积分10
5秒前
今日无事发布了新的文献求助10
5秒前
丰富的高山完成签到,获得积分10
5秒前
泡泡完成签到,获得积分10
6秒前
6秒前
你好完成签到,获得积分20
6秒前
6秒前
zy发布了新的文献求助10
6秒前
cenghao应助吭哧吭哧采纳,获得10
6秒前
jianguo完成签到,获得积分10
6秒前
薯条派发布了新的文献求助10
7秒前
einspringen完成签到,获得积分10
7秒前
华仔应助文静的铅笔采纳,获得10
7秒前
鱿鱼炒黄瓜完成签到,获得积分10
8秒前
李妍妍完成签到,获得积分10
8秒前
清脆的白开水完成签到,获得积分10
8秒前
Lau完成签到,获得积分10
8秒前
龙腾岁月发布了新的文献求助10
8秒前
xfyxxh完成签到,获得积分10
8秒前
He完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573719
求助须知:如何正确求助?哪些是违规求助? 4659992
关于积分的说明 14727079
捐赠科研通 4599835
什么是DOI,文献DOI怎么找? 2524518
邀请新用户注册赠送积分活动 1494863
关于科研通互助平台的介绍 1464959