Convolutional Neural Network Architectures for Sonar-Based Diver Detection and Tracking

声纳 计算机科学 卷积神经网络 人工智能 计算机视觉 水下 图像处理 光学(聚焦) 遥控水下航行器 图像(数学) 移动机器人 机器人 海洋学 物理 光学 地质学
作者
Igor Kvasić,Nikola Mišković,Zoran Vukić
出处
期刊:OCEANS 2019 - Marseille 卷期号:: 1-6 被引量:34
标识
DOI:10.1109/oceanse.2019.8867461
摘要

Autonomous underwater navigation presents a whole set of challenges to be resolved in order to become adequately accurate and reliable. That is particularly critical when human divers work in close collaboration with autonomous underwater vehicles (AUVs). In absence of global positioning signals underwater, acoustic based sensors such as LBL (long-baseline), SBL (short-baseline) and USBL (ultrashort-baseline) are commonly used for navigation and localization. In addition to these low-bandwidth and high latency technologies, cameras and sonars can provide position measurements relative to the vehicle which can be used as an aid for navigation as well as for keeping a safe working distance between the diver and the AUV. While optical cameras are highly affected by water turbidity and lighting conditions, sonar images often become hard to interpret using conventional image processing methods due to image granulation and high noise levels. This paper focuses on finding a robust and reliable sonar image processing method for detection and tracking of human divers using convolutional neural networks. Machine learning algorithms are making a huge impact in computer vision applications but are not always considered when it comes to sonar image processing. After presenting commonly used image processing techniques the paper will focus on giving an overview of state-of-the-art machine learning algorithms and explore their performance in custom sonar image dataset processing. Finally, the performance of these algorithms will be compared on a set of sonar recordings to determine their reliability and applicability in a real-time operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蝴蝶变成毛毛虫完成签到,获得积分10
1秒前
yulinhai完成签到,获得积分10
1秒前
2秒前
maidida完成签到,获得积分10
2秒前
shell发布了新的文献求助80
2秒前
量子星尘发布了新的文献求助20
3秒前
gan完成签到,获得积分10
3秒前
wzf123456发布了新的文献求助10
5秒前
小月亮完成签到,获得积分10
5秒前
不以发布了新的文献求助30
6秒前
Liuuhhua完成签到,获得积分10
7秒前
8秒前
10秒前
言非离应助f1sh采纳,获得20
11秒前
正好完成签到,获得积分10
11秒前
青年才俊发布了新的文献求助10
12秒前
科研通AI6应助王挪采纳,获得10
12秒前
大模型应助毛头侠采纳,获得10
13秒前
开朗穆发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
16秒前
传奇3应助不以采纳,获得10
16秒前
青年才俊发布了新的文献求助10
18秒前
Murm完成签到 ,获得积分20
18秒前
moonlightblu_完成签到,获得积分10
18秒前
科研通AI5应助外向的花花采纳,获得10
18秒前
19秒前
wzf123456完成签到,获得积分10
20秒前
无头绪完成签到,获得积分10
20秒前
开朗穆完成签到,获得积分10
21秒前
林洁佳发布了新的文献求助10
22秒前
Tong发布了新的文献求助30
22秒前
荆扉发布了新的文献求助10
23秒前
少年游完成签到,获得积分10
23秒前
汶溢完成签到,获得积分10
23秒前
科研通AI5应助微笑的水桃采纳,获得10
25秒前
小洋一生完成签到,获得积分10
26秒前
zhou完成签到,获得积分10
26秒前
能干的丸子完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941339
求助须知:如何正确求助?哪些是违规求助? 4207390
关于积分的说明 13077624
捐赠科研通 3986257
什么是DOI,文献DOI怎么找? 2182529
邀请新用户注册赠送积分活动 1198125
关于科研通互助平台的介绍 1110387