Convolutional Neural Network Architectures for Sonar-Based Diver Detection and Tracking

声纳 计算机科学 卷积神经网络 人工智能 计算机视觉 水下 图像处理 光学(聚焦) 遥控水下航行器 图像(数学) 移动机器人 机器人 海洋学 物理 光学 地质学
作者
Igor Kvasić,Nikola Mišković,Zoran Vukić
出处
期刊:OCEANS 2019 - Marseille 卷期号:: 1-6 被引量:41
标识
DOI:10.1109/oceanse.2019.8867461
摘要

Autonomous underwater navigation presents a whole set of challenges to be resolved in order to become adequately accurate and reliable. That is particularly critical when human divers work in close collaboration with autonomous underwater vehicles (AUVs). In absence of global positioning signals underwater, acoustic based sensors such as LBL (long-baseline), SBL (short-baseline) and USBL (ultrashort-baseline) are commonly used for navigation and localization. In addition to these low-bandwidth and high latency technologies, cameras and sonars can provide position measurements relative to the vehicle which can be used as an aid for navigation as well as for keeping a safe working distance between the diver and the AUV. While optical cameras are highly affected by water turbidity and lighting conditions, sonar images often become hard to interpret using conventional image processing methods due to image granulation and high noise levels. This paper focuses on finding a robust and reliable sonar image processing method for detection and tracking of human divers using convolutional neural networks. Machine learning algorithms are making a huge impact in computer vision applications but are not always considered when it comes to sonar image processing. After presenting commonly used image processing techniques the paper will focus on giving an overview of state-of-the-art machine learning algorithms and explore their performance in custom sonar image dataset processing. Finally, the performance of these algorithms will be compared on a set of sonar recordings to determine their reliability and applicability in a real-time operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小璟发布了新的文献求助10
1秒前
焚天尘殇完成签到,获得积分10
1秒前
1秒前
明亮元菱完成签到,获得积分10
1秒前
迷你的隶完成签到,获得积分10
2秒前
2秒前
所所应助挚友采纳,获得10
3秒前
共享精神应助Ting采纳,获得10
3秒前
马小鱼完成签到,获得积分10
4秒前
4秒前
4秒前
傲娇的厉发布了新的文献求助10
4秒前
白薯发布了新的文献求助10
4秒前
浮游应助重要棉花糖采纳,获得10
4秒前
斯坦福没有冬天给斯坦福没有冬天的求助进行了留言
4秒前
5秒前
Akim应助柳絮吹雪采纳,获得10
5秒前
星辰大海应助洁净的千凡采纳,获得10
5秒前
晴朗完成签到,获得积分10
5秒前
康康完成签到 ,获得积分10
5秒前
Orange应助岁月荣耀采纳,获得10
5秒前
sfaaeaadefef完成签到,获得积分10
5秒前
简柠发布了新的文献求助10
6秒前
6秒前
大白牛完成签到,获得积分10
6秒前
Orange应助猫好好采纳,获得10
7秒前
wmm发布了新的文献求助10
7秒前
土豆完成签到,获得积分10
7秒前
7秒前
7秒前
幺幺发布了新的文献求助10
8秒前
浮游应助舒心的芸采纳,获得10
8秒前
浮游应助yuxin采纳,获得10
9秒前
loc1101完成签到,获得积分10
10秒前
10秒前
晴朗发布了新的文献求助10
11秒前
灵巧越泽发布了新的文献求助10
11秒前
yq完成签到,获得积分10
12秒前
wao完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5270592
求助须知:如何正确求助?哪些是违规求助? 4428746
关于积分的说明 13785589
捐赠科研通 4306594
什么是DOI,文献DOI怎么找? 2363149
邀请新用户注册赠送积分活动 1358858
关于科研通互助平台的介绍 1321740