Convolutional Neural Network Architectures for Sonar-Based Diver Detection and Tracking

声纳 计算机科学 卷积神经网络 人工智能 计算机视觉 水下 图像处理 光学(聚焦) 遥控水下航行器 图像(数学) 移动机器人 机器人 海洋学 物理 光学 地质学
作者
Igor Kvasić,Nikola Mišković,Zoran Vukić
出处
期刊:OCEANS 2019 - Marseille 卷期号:: 1-6 被引量:41
标识
DOI:10.1109/oceanse.2019.8867461
摘要

Autonomous underwater navigation presents a whole set of challenges to be resolved in order to become adequately accurate and reliable. That is particularly critical when human divers work in close collaboration with autonomous underwater vehicles (AUVs). In absence of global positioning signals underwater, acoustic based sensors such as LBL (long-baseline), SBL (short-baseline) and USBL (ultrashort-baseline) are commonly used for navigation and localization. In addition to these low-bandwidth and high latency technologies, cameras and sonars can provide position measurements relative to the vehicle which can be used as an aid for navigation as well as for keeping a safe working distance between the diver and the AUV. While optical cameras are highly affected by water turbidity and lighting conditions, sonar images often become hard to interpret using conventional image processing methods due to image granulation and high noise levels. This paper focuses on finding a robust and reliable sonar image processing method for detection and tracking of human divers using convolutional neural networks. Machine learning algorithms are making a huge impact in computer vision applications but are not always considered when it comes to sonar image processing. After presenting commonly used image processing techniques the paper will focus on giving an overview of state-of-the-art machine learning algorithms and explore their performance in custom sonar image dataset processing. Finally, the performance of these algorithms will be compared on a set of sonar recordings to determine their reliability and applicability in a real-time operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助风中白云采纳,获得10
刚刚
1秒前
1秒前
Iridesent0v0发布了新的文献求助10
1秒前
赘婿应助孙朱珠采纳,获得10
1秒前
不够萌发布了新的文献求助10
2秒前
垃圾筐完成签到,获得积分10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
愉快秀发布了新的文献求助10
3秒前
朴实的小萱完成签到 ,获得积分10
3秒前
涵忆发布了新的文献求助10
3秒前
wanci应助凯凯采纳,获得10
4秒前
小二郎应助凯凯采纳,获得10
4秒前
4秒前
Ava应助凯凯采纳,获得10
4秒前
天天快乐应助凯凯采纳,获得10
4秒前
深情安青应助凯凯采纳,获得10
4秒前
慕青应助凯凯采纳,获得10
4秒前
所所应助鹿人采纳,获得10
4秒前
李爱国应助凯凯采纳,获得10
4秒前
熬夜波比应助凯凯采纳,获得10
4秒前
Ava应助凯凯采纳,获得10
5秒前
大个应助凯凯采纳,获得10
5秒前
yyq发布了新的文献求助10
5秒前
5秒前
5秒前
快乐小猴完成签到,获得积分20
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
无奈可仁完成签到,获得积分10
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661010
求助须知:如何正确求助?哪些是违规求助? 4836679
关于积分的说明 15093101
捐赠科研通 4819724
什么是DOI,文献DOI怎么找? 2579492
邀请新用户注册赠送积分活动 1533827
关于科研通互助平台的介绍 1492616