Convolutional Neural Network Architectures for Sonar-Based Diver Detection and Tracking

声纳 计算机科学 卷积神经网络 人工智能 计算机视觉 水下 图像处理 光学(聚焦) 遥控水下航行器 图像(数学) 移动机器人 机器人 海洋学 物理 光学 地质学
作者
Igor Kvasić,Nikola Mišković,Zoran Vukić
出处
期刊:OCEANS 2019 - Marseille 卷期号:: 1-6 被引量:41
标识
DOI:10.1109/oceanse.2019.8867461
摘要

Autonomous underwater navigation presents a whole set of challenges to be resolved in order to become adequately accurate and reliable. That is particularly critical when human divers work in close collaboration with autonomous underwater vehicles (AUVs). In absence of global positioning signals underwater, acoustic based sensors such as LBL (long-baseline), SBL (short-baseline) and USBL (ultrashort-baseline) are commonly used for navigation and localization. In addition to these low-bandwidth and high latency technologies, cameras and sonars can provide position measurements relative to the vehicle which can be used as an aid for navigation as well as for keeping a safe working distance between the diver and the AUV. While optical cameras are highly affected by water turbidity and lighting conditions, sonar images often become hard to interpret using conventional image processing methods due to image granulation and high noise levels. This paper focuses on finding a robust and reliable sonar image processing method for detection and tracking of human divers using convolutional neural networks. Machine learning algorithms are making a huge impact in computer vision applications but are not always considered when it comes to sonar image processing. After presenting commonly used image processing techniques the paper will focus on giving an overview of state-of-the-art machine learning algorithms and explore their performance in custom sonar image dataset processing. Finally, the performance of these algorithms will be compared on a set of sonar recordings to determine their reliability and applicability in a real-time operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多看文献完成签到,获得积分10
刚刚
iiing完成签到,获得积分10
1秒前
1秒前
2秒前
清秀凌蝶完成签到 ,获得积分10
2秒前
zhen完成签到,获得积分10
2秒前
yunlong完成签到 ,获得积分10
2秒前
dahuihui完成签到,获得积分10
2秒前
孙新然发布了新的文献求助10
2秒前
LDD完成签到,获得积分10
2秒前
蔡大鲸完成签到,获得积分10
3秒前
瑞少完成签到,获得积分10
3秒前
孤独的远山完成签到,获得积分10
3秒前
silin发布了新的文献求助10
3秒前
4秒前
4秒前
qin202569完成签到,获得积分10
4秒前
邹益春发布了新的文献求助10
4秒前
5秒前
啦啦啦完成签到,获得积分10
5秒前
ly完成签到,获得积分10
6秒前
alvin完成签到,获得积分10
6秒前
Z1026完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
万能图书馆应助botion采纳,获得10
6秒前
舒心健柏完成签到,获得积分10
7秒前
7秒前
李可乐发布了新的文献求助10
7秒前
科研辣椒完成签到,获得积分10
7秒前
鳗鱼衣完成签到 ,获得积分10
7秒前
luyunxing完成签到,获得积分10
7秒前
7秒前
zxt完成签到,获得积分10
7秒前
科研通AI6应助孤独的猎手采纳,获得10
8秒前
Yummy完成签到,获得积分10
9秒前
Annnnnn完成签到,获得积分10
9秒前
echo完成签到,获得积分10
9秒前
yibaozhangfa完成签到,获得积分10
11秒前
11发布了新的文献求助30
11秒前
肝不动的牛马完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977