Convolutional Neural Network Architectures for Sonar-Based Diver Detection and Tracking

声纳 计算机科学 卷积神经网络 人工智能 计算机视觉 水下 图像处理 光学(聚焦) 遥控水下航行器 图像(数学) 移动机器人 机器人 海洋学 物理 光学 地质学
作者
Igor Kvasić,Nikola Mišković,Zoran Vukić
出处
期刊:OCEANS 2019 - Marseille 卷期号:: 1-6 被引量:41
标识
DOI:10.1109/oceanse.2019.8867461
摘要

Autonomous underwater navigation presents a whole set of challenges to be resolved in order to become adequately accurate and reliable. That is particularly critical when human divers work in close collaboration with autonomous underwater vehicles (AUVs). In absence of global positioning signals underwater, acoustic based sensors such as LBL (long-baseline), SBL (short-baseline) and USBL (ultrashort-baseline) are commonly used for navigation and localization. In addition to these low-bandwidth and high latency technologies, cameras and sonars can provide position measurements relative to the vehicle which can be used as an aid for navigation as well as for keeping a safe working distance between the diver and the AUV. While optical cameras are highly affected by water turbidity and lighting conditions, sonar images often become hard to interpret using conventional image processing methods due to image granulation and high noise levels. This paper focuses on finding a robust and reliable sonar image processing method for detection and tracking of human divers using convolutional neural networks. Machine learning algorithms are making a huge impact in computer vision applications but are not always considered when it comes to sonar image processing. After presenting commonly used image processing techniques the paper will focus on giving an overview of state-of-the-art machine learning algorithms and explore their performance in custom sonar image dataset processing. Finally, the performance of these algorithms will be compared on a set of sonar recordings to determine their reliability and applicability in a real-time operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助Faith采纳,获得10
刚刚
傲娇的月亮完成签到,获得积分10
刚刚
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
田様应助慢慢采纳,获得10
1秒前
1秒前
劼大大完成签到,获得积分10
1秒前
执着的草丛完成签到,获得积分10
1秒前
1秒前
wanci应助zwx采纳,获得10
2秒前
zwx发布了新的文献求助20
2秒前
3秒前
Owen应助风趣的天奇采纳,获得10
4秒前
clear发布了新的文献求助10
5秒前
Tting发布了新的文献求助10
5秒前
wsd发布了新的文献求助10
5秒前
AhhHuang举报活力怜雪求助涉嫌违规
5秒前
sulin发布了新的文献求助10
5秒前
麦地娜发布了新的文献求助10
5秒前
兜兜风gf完成签到 ,获得积分10
6秒前
6秒前
可爱的函函应助张远最帅采纳,获得10
6秒前
沙库巴曲完成签到,获得积分10
6秒前
熊猫发布了新的文献求助20
7秒前
燕柯龙之介完成签到,获得积分10
7秒前
7秒前
敲敲发布了新的文献求助10
8秒前
shelly发布了新的文献求助10
9秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
meibeiwu发布了新的文献求助10
11秒前
范范范发布了新的文献求助10
11秒前
ding应助sunshine采纳,获得10
12秒前
嘿嘿发布了新的文献求助10
12秒前
上官若男应助clear采纳,获得10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049