微流控
纳米技术
制作
微尺度化学
纳米材料
材料科学
生物医学
药物输送
计算机科学
生物信息学
医学
病理
替代医学
生物
数学
数学教育
作者
Qilong Zhao,Huanqing Cui,Yunlong Wang,Xuemin Du
出处
期刊:Small
[Wiley]
日期:2019-10-25
卷期号:16 (9)
被引量:97
标识
DOI:10.1002/smll.201903798
摘要
Abstract The emergence of micro/nanomaterials in recent decades has brought promising alternative approaches in various biomedicine‐related fields such as pharmaceutics, diagnostics, and therapeutics. These micro/nanomaterials for specific biomedical applications shall possess tailored properties and functionalities that are closely correlated to their geometries, structures, and compositions, therefore placing extremely high demands for manufacturing techniques. Owing to the superior capabilities in manipulating fluids and droplets at microscale, microfluidics has offered robust and versatile platform technologies enabling rational design and fabrication of micro/nanomaterials with precisely controlled geometries, structures and compositions in high throughput manners, making them excellent candidates for a variety of biomedical applications. This review briefly summarizes the progress of microfluidics in the fabrication of various micro/nanomaterials ranging from 0D (particles), 1D (fibers) to 2D/3D (film and bulk materials) materials with controllable geometries, structures, and compositions. The applications of these microfluidic‐based materials in the fields of diagnostics, drug delivery, organs‐on‐chips, tissue engineering, and stimuli‐responsive biodevices are introduced. Finally, an outlook is discussed on the future direction of microfluidic platforms for generating materials with superior properties and on‐demand functionalities. The integration of new materials and techniques with microfluidics will pave new avenues for preparing advanced micro/nanomaterials with enhanced performance for biomedical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI