Bayesian weighted Mendelian randomization for causal inference based on summary statistics

孟德尔随机化 推论 因果推理 计算机科学 协变量 多效性 贝叶斯推理 贝叶斯概率 全基因组关联研究 机器学习 人工智能 数据挖掘 计量经济学 数学 生物 遗传变异 单核苷酸多态性 基因型 表型 基因 生物化学
作者
Jia Zhao,Jingsi Ming,Xianghong Hu,Gang Chen,Jin Liu,Can Yang
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:36 (5): 1501-1508 被引量:101
标识
DOI:10.1093/bioinformatics/btz749
摘要

Abstract Motivation The results from Genome-Wide Association Studies (GWAS) on thousands of phenotypes provide an unprecedented opportunity to infer the causal effect of one phenotype (exposure) on another (outcome). Mendelian randomization (MR), an instrumental variable (IV) method, has been introduced for causal inference using GWAS data. Due to the polygenic architecture of complex traits/diseases and the ubiquity of pleiotropy, however, MR has many unique challenges compared to conventional IV methods. Results We propose a Bayesian weighted Mendelian randomization (BWMR) for causal inference to address these challenges. In our BWMR model, the uncertainty of weak effects owing to polygenicity has been taken into account and the violation of IV assumption due to pleiotropy has been addressed through outlier detection by Bayesian weighting. To make the causal inference based on BWMR computationally stable and efficient, we developed a variational expectation-maximization (VEM) algorithm. Moreover, we have also derived an exact closed-form formula to correct the posterior covariance which is often underestimated in variational inference. Through comprehensive simulation studies, we evaluated the performance of BWMR, demonstrating the advantage of BWMR over its competitors. Then we applied BWMR to make causal inference between 130 metabolites and 93 complex human traits, uncovering novel causal relationship between exposure and outcome traits. Availability and implementation The BWMR software is available at https://github.com/jiazhao97/BWMR. Supplementary information Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助LIU采纳,获得10
刚刚
绿麦盲区发布了新的文献求助10
刚刚
FIGGIEKIO完成签到,获得积分10
刚刚
星星发布了新的文献求助10
刚刚
852应助luoshi采纳,获得10
1秒前
小王发布了新的文献求助10
1秒前
hahah完成签到,获得积分10
1秒前
1秒前
yang完成签到 ,获得积分10
2秒前
lynn_zhang完成签到,获得积分10
2秒前
化学狗发布了新的文献求助10
3秒前
3秒前
浩浩完成签到,获得积分10
4秒前
胡图图完成签到,获得积分10
4秒前
包容的剑发布了新的文献求助10
5秒前
6秒前
小马甲应助细腻沅采纳,获得10
6秒前
7秒前
招财不肥完成签到,获得积分10
7秒前
7秒前
77完成签到,获得积分10
8秒前
NexusExplorer应助顾阿秀采纳,获得10
8秒前
8秒前
科研通AI5应助二二二采纳,获得10
9秒前
terrell完成签到,获得积分10
9秒前
David完成签到,获得积分10
9秒前
9秒前
科研通AI2S应助Denmark采纳,获得10
10秒前
10秒前
望望旺仔牛奶完成签到,获得积分10
10秒前
香蕉觅云应助luoshi采纳,获得10
11秒前
Zn应助gnr2000采纳,获得10
11秒前
二小完成签到,获得积分20
11秒前
拼搏思卉完成签到,获得积分10
11秒前
内向音响发布了新的文献求助10
11秒前
上官若男应助曼尼采纳,获得10
12秒前
飞羽发布了新的文献求助10
12秒前
科研通AI2S应助song99采纳,获得10
12秒前
momi完成签到 ,获得积分10
12秒前
哈哈哈呢完成签到 ,获得积分20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762