EEG-based emotion recognition with deep convolutional neural networks

卷积神经网络 脑电图 模式识别(心理学) 计算机科学 人工智能 语音识别 心理学 神经科学
作者
Mehmet Akif Özdemir,Murside Degirmenci,Elif Izci,Aydın Akan
出处
期刊:Biomedizinische Technik [De Gruyter]
卷期号:66 (1): 43-57 被引量:42
标识
DOI:10.1515/bmt-2019-0306
摘要

The emotional state of people plays a key role in physiological and behavioral human interaction. Emotional state analysis entails many fields such as neuroscience, cognitive sciences, and biomedical engineering because the parameters of interest contain the complex neuronal activities of the brain. Electroencephalogram (EEG) signals are processed to communicate brain signals with external systems and make predictions over emotional states. This paper proposes a novel method for emotion recognition based on deep convolutional neural networks (CNNs) that are used to classify Valence, Arousal, Dominance, and Liking emotional states. Hence, a novel approach is proposed for emotion recognition with time series of multi-channel EEG signals from a Database for Emotion Analysis and Using Physiological Signals (DEAP). We propose a new approach to emotional state estimation utilizing CNN-based classification of multi-spectral topology images obtained from EEG signals. In contrast to most of the EEG-based approaches that eliminate spatial information of EEG signals, converting EEG signals into a sequence of multi-spectral topology images, temporal, spectral, and spatial information of EEG signals are preserved. The deep recurrent convolutional network is trained to learn important representations from a sequence of three-channel topographical images. We have achieved test accuracy of 90.62% for negative and positive Valence, 86.13% for high and low Arousal, 88.48% for high and low Dominance, and finally 86.23% for like-unlike. The evaluations of this method on emotion recognition problem revealed significant improvements in the classification accuracy when compared with other studies using deep neural networks (DNNs) and one-dimensional CNNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZZZ完成签到,获得积分10
刚刚
赖林完成签到,获得积分10
刚刚
1秒前
1秒前
小蘑菇应助听话的梦之采纳,获得10
2秒前
想想zzz发布了新的文献求助10
2秒前
2秒前
香蕉觅云应助jyx采纳,获得10
3秒前
星希完成签到 ,获得积分10
3秒前
5秒前
zzc完成签到,获得积分10
5秒前
Lobectomy发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
小二郎应助hsing采纳,获得10
7秒前
脑洞疼应助李昕123采纳,获得10
7秒前
乐乐发布了新的文献求助20
7秒前
打打应助隐形的雪碧采纳,获得10
7秒前
明亮的卿发布了新的文献求助10
7秒前
hehedala完成签到,获得积分10
8秒前
8秒前
notfound完成签到,获得积分10
10秒前
马德里就思议完成签到,获得积分10
10秒前
Aeastie发布了新的文献求助10
11秒前
京港风发布了新的文献求助10
11秒前
13秒前
13秒前
英姑应助甜甜的又蓝采纳,获得10
14秒前
顾矜应助夜王采纳,获得10
15秒前
15秒前
nannan发布了新的文献求助200
16秒前
Hello应助愉快的宛儿采纳,获得10
16秒前
17秒前
善学以致用应助kmmu0611采纳,获得30
17秒前
浅尝离白应助sukasuka采纳,获得30
17秒前
wujx589完成签到,获得积分10
19秒前
21秒前
22秒前
zhouhao完成签到 ,获得积分10
23秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158072
求助须知:如何正确求助?哪些是违规求助? 2809436
关于积分的说明 7881999
捐赠科研通 2467898
什么是DOI,文献DOI怎么找? 1313783
科研通“疑难数据库(出版商)”最低求助积分说明 630538
版权声明 601943