EEG-based emotion recognition with deep convolutional neural networks

卷积神经网络 脑电图 模式识别(心理学) 计算机科学 情绪识别 唤醒 情绪分类 深度学习 人工智能 价(化学) 语音识别 心理学 神经科学 物理 量子力学
作者
Mehmet Akif Özdemir,Mürşide Değirmenci,Elif İzci,Aydın Akan
出处
期刊:Biomedizinische Technik [De Gruyter]
卷期号:66 (1): 43-57 被引量:72
标识
DOI:10.1515/bmt-2019-0306
摘要

Abstract The emotional state of people plays a key role in physiological and behavioral human interaction. Emotional state analysis entails many fields such as neuroscience, cognitive sciences, and biomedical engineering because the parameters of interest contain the complex neuronal activities of the brain. Electroencephalogram (EEG) signals are processed to communicate brain signals with external systems and make predictions over emotional states. This paper proposes a novel method for emotion recognition based on deep convolutional neural networks (CNNs) that are used to classify Valence, Arousal, Dominance, and Liking emotional states. Hence, a novel approach is proposed for emotion recognition with time series of multi-channel EEG signals from a Database for Emotion Analysis and Using Physiological Signals (DEAP). We propose a new approach to emotional state estimation utilizing CNN-based classification of multi-spectral topology images obtained from EEG signals. In contrast to most of the EEG-based approaches that eliminate spatial information of EEG signals, converting EEG signals into a sequence of multi-spectral topology images, temporal, spectral, and spatial information of EEG signals are preserved. The deep recurrent convolutional network is trained to learn important representations from a sequence of three-channel topographical images. We have achieved test accuracy of 90.62% for negative and positive Valence, 86.13% for high and low Arousal, 88.48% for high and low Dominance, and finally 86.23% for like–unlike. The evaluations of this method on emotion recognition problem revealed significant improvements in the classification accuracy when compared with other studies using deep neural networks (DNNs) and one-dimensional CNNs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ava应助LY采纳,获得10
1秒前
哈哈哈完成签到,获得积分10
1秒前
失眠的莺关注了科研通微信公众号
1秒前
1秒前
蓝莓酥study完成签到,获得积分10
1秒前
junjun2011完成签到,获得积分10
2秒前
研友_LNB5DL完成签到,获得积分10
2秒前
2秒前
xiao完成签到,获得积分10
3秒前
sian完成签到,获得积分10
3秒前
3秒前
痴情的路灯完成签到 ,获得积分10
3秒前
于是完成签到 ,获得积分10
4秒前
Decade完成签到,获得积分10
4秒前
断了的弦完成签到,获得积分10
4秒前
4秒前
祺悆亼发布了新的文献求助10
4秒前
FashionBoy应助胡烈烈采纳,获得10
4秒前
江酱完成签到,获得积分10
5秒前
12345完成签到,获得积分10
5秒前
何磊发布了新的文献求助10
6秒前
红丽阿妹发布了新的文献求助10
6秒前
6秒前
qiaoxixi发布了新的文献求助10
6秒前
6秒前
xuan发布了新的文献求助10
6秒前
儒雅的菠萝吹雪完成签到,获得积分10
6秒前
6秒前
在水一方应助yy采纳,获得10
7秒前
今后应助cjhus采纳,获得10
7秒前
7秒前
asdfqwer完成签到,获得积分0
7秒前
善学以致用应助JJJJJJJJJJJ采纳,获得10
7秒前
Lee发布了新的文献求助10
8秒前
Li完成签到,获得积分10
8秒前
Xiaoab完成签到,获得积分10
8秒前
tiezhu应助ctttt采纳,获得10
10秒前
鲤鱼南烟发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651821
求助须知:如何正确求助?哪些是违规求助? 4786050
关于积分的说明 15056478
捐赠科研通 4810468
什么是DOI,文献DOI怎么找? 2573210
邀请新用户注册赠送积分活动 1529071
关于科研通互助平台的介绍 1488036